Skip to main content
Log in

Performance Analysis of Full-Rate Coordinate Interleaved Orthogonal Designs Over Time-Selective Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Coordinate interleaved orthogonal designs (CIOD) (Khan and Rajan in IEEE Trans Inform Theory 52(5):2062–2091, 2006) can offer desirable properties, such as full rate, full diversity and single-symbol maximum likelihood decoding for two, three and four transmit antennas under quasi-static fading channels. When fading is time-selective, zero-forcing decoder can applied to achieve good performance while still maintain low decoding complexity. In this paper, theoretical analysis of symbol error rate performance for CIOD codes over time-selective fading channels with a zero-forcing linear receiver is derived. Firstly, a closed-form expression (i.e., not in integral form) is derived for the average symbol pair-wise error probability (SPEP) in time-selective frequency-nonselective independent identically distributed (i.i.d.) Rayleigh fading channels. Then, the SPEP is used to derive a tight upper bound (UB) for the symbol-error rate (SER) of CIOD codes. Simulation results indicate that our theoretical UB often coincides (within 0.05 dB) with the true SER obtained via Monte-Carlo simulation. The UB can thus be used to accurately predict and optimize the performance of CIOD codes over time-selective fading channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MATH  MathSciNet  Google Scholar 

  2. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal of Selected Areas in Communications, 16(8), 1451–1458.

  3. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MATH  MathSciNet  Google Scholar 

  4. Jafarkhani, H. (2001). A quasi-orthogonal space-time block code. IEEE Transactions on Communications, 49(1), 1–4.

    Article  MATH  Google Scholar 

  5. Tirkkonen, O., Boariu, A., & Hottinen, A. (2000). Minimal non-orthogonality rate 1 space-time block code for 3+ Tx antennas. In Proceedings of IEEE International Symposium on Spread-Spectrum Techniques and Applications (ISSSTA’00), (pp. 429–432). New Jersey, USA.

  6. Papadias, C. B., & Foschini, G. J. (2003). Capacity-approaching space-time codes for systems employing four transmitter antennas. IEEE Transactions on Information Theory, 49(3), 726–732.

    Article  MATH  MathSciNet  Google Scholar 

  7. Sharma, N., & Papadias, C. B. (2003). Improved quasi-orthogonal codes through constellation rotation. IEEE Transactions on Communications, 51(3), 332–335.

    Article  Google Scholar 

  8. Su, W., & Xia, X.-G. (2004). Signal constellations for quasi-orthogonal space-time block codes with full diversity. IEEE Transactions on Information Theory, 50(10), 2331–2347.

    Article  MATH  MathSciNet  Google Scholar 

  9. Khan, M.Z.A., & Rajan, B.S. (2002). Space-time block codes from co-ordinate interleaved orthogonal designs. In Proceedings of the IEEE International Symposium on Information (ISIT), Switzerland: Lausanne.

  10. Khan, Z. A., & Rajan, B. S. (2006). Single-symbol maximum likelihood decodable linear STBCs. IEEE Transactions on Information Theory, 52(5), 2062–2091.

    Article  MATH  MathSciNet  Google Scholar 

  11. Đào, D. N., & Tellambura, C. (2008). Decoding, performance analysis, and optimal signal designs for coordinate interleaved orthogonal designs. IEEE Transactions on Wireless Communications, 7(1), 48–53.

    Article  Google Scholar 

  12. Lee, H. J., Andrews, J. G., Heath, R. W., & Powers, E. J. (2009). The performance of space–time block codes from coordinate interleaved orthogonal designs over Nakagami-\(m\) Fading channels. IEEE Transactions on Wireless Communications, 57(3), 653–664.

    Article  Google Scholar 

  13. Lee, Hoojin, Andrews, Jeffrey G., & Edward, J. (2008). Powers: Full-rate STBCs from coordinate interleaved orthogonal designs in time-selective fading channels. IEICE Transactions, 91–B(4), 1185–1189.

    Article  Google Scholar 

  14. Jakes, W. C. (1974). Microwave mobile communication. New Jersey: Wiley.

    Google Scholar 

  15. Tran, T. A., & Sesay, A. B. (2004). A generalized simplified ML decoder of orthogonal space–time block code for wireless communications over time-selective fading channels. IEEE Transactions on Wireless Communications, 3(3), 855–864.

    Article  Google Scholar 

  16. Vielmon, A., Li, Y(. G)., & Barry, J. R. (2004). Performance of Alamouti transmit diversity over time-varying Rayleigh-Fading channels. IEEE Transactions on Wireless Communications, 3(5), 1369–1373.

    Article  Google Scholar 

  17. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. Massachusetts: Academic Press.

    MATH  Google Scholar 

  18. http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/03/01/02/0011. Accessed May (2013)

  19. http://functions.wolfram.com/HypergeometricFunctions/LaguerreL3General/06/01/03/01/02/0001. Accessed May (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Bien Pham.

Appendix

Appendix

To proof Theorem 1, we firstly introduce Lemma 1 as follow:

Lemma 1

Let \(X_1 =\frac{\left| {g_1 } \right| ^{2}}{\lambda _1 }\frac{SNR}{4}\Delta _{I}^2 =\frac{\left| {g_1 } \right| ^{2}}{\lambda _1 }c_{I} \) and \(X_2 =\frac{\left| {g_2 } \right| ^{2}}{\lambda _3 }\frac{SNR}{4}\Delta _Q^2 =\frac{\left| {g_2 } \right| ^{2}}{\lambda _3 }c_Q \) then \(X_{1}\) and \(X_{2}\) are independent random variables whose probability density functions (PDFs) respectively are

$$\begin{aligned} p_{X_1} (x)&= \sum _{k=0}^{2N_{R} -1} {\left( {{\begin{array}{l} {2N_{R} -1} \\ {2N_{R} -1-k} \\ \end{array}}} \right) } \frac{\rho ^{2k}\left( {1-\rho ^{2}} \right) ^{2N-1-k}}{k\hbox {!}c_{I}^{k+1}}x^{k}\exp \left( {\frac{-x}{c_{I}}} \right) \end{aligned}$$
(29)
$$\begin{aligned} p_{X_2 } (y)&= \sum _{k=0}^{2N_{R} -1} {\left( {{\begin{array}{l} {2N_{R} -1} \\ {2N_{R} -1-k} \\ \end{array}}} \right) } \frac{\rho ^{2k}\left( {1-\rho ^{2}} \right) ^{2N-1-k}}{k\hbox {!}c_Q^{k+1}}y^{k}\exp \left( {\frac{-y}{c_Q }} \right) \end{aligned}$$
(30)

Proof

The proof of Eqs. (29) and (30) is the same, so we consider the proof of Eq. (29). Let us introduce the random variables \(\xi _{1k}\) and \(\xi _{2k}, \,k = 1,..., N_{R}\)

$$\begin{aligned} \xi _{1k} =\frac{h_{1k} (1)-\rho h_{1k} (2)}{\sqrt{1-\rho ^{2}}};\,\xi _{2k} =\frac{h_{2k} (2)-\rho h_{2k} (1)}{\sqrt{1-\rho ^{2}}} \end{aligned}$$
(31)

where we assume \(\rho ^{2} < 1\). By construction, \(\xi _{1k}\) and \(\xi _{2k}\) are independent and identically distributed with the same pdf as \(h_{1k}\)(2) and \(h_{2k}\)(1); furthermore, \(\xi _{1k}\) is independent of \(h_{1k}\)(2), \(\xi _{1k}\) and is independent of \(h_{2k}\)(1). Plugging (31) into \(X_{1}\) leads to

$$\begin{aligned} X_1&= \left| {\rho \sqrt{\lambda _1 }+\sqrt{1-\rho ^{2}}\frac{\sum _{k=1}^{N_{R}} {\left( {h_{1k}^{*} (2)\xi _{1k} +h_{2k} (1)\xi _{2k}^{*}} \right) }}{\sqrt{\lambda _1 }}} \right| ^{2}c_{I} \end{aligned}$$
(32)

To simplify this expression further, observe that the fraction in (32) can be expressed as an inner product

$$\begin{aligned} z_1 +\hbox {j}z_2 =\frac{\sum _{k=1}^{N_{R}} {\left( {h_{1k}^{*} (2)\xi _{1k} +h_{2k} (1)\xi _{2k}^{*}} \right) }}{\sqrt{\lambda _1 }}=\left\langle {\frac{{\mathbf {h}}}{\left\| {\mathbf {h}} \right\| },{\mathbf {e}}} \right\rangle \end{aligned}$$
(33)

where \(z_{1}, \,z_{2}\) are real variables, \({\mathbf {h}}=\left[ {h_{11} (2),h_{21}^{*} (1),\ldots ,h_{1N_{R}} (2),h_{2N_{R}}^{*} (1)} \right] ^{\mathrm{T}}\) and \({\mathbf {e}}=\left[ {\xi _{11}^{*} ,\xi _{21} ,\ldots ,\xi _{1N_{R}}^{*} ,\xi _{2N_{R}}} \right] ^{\mathrm{T}}\). Since e is symmetric, the distribution of \(z_{1}\) + j\(z_{2}\) reduces to the distribution of \(h_{1k}\)(1), independent of h (and, thus, also independent of \(\left\| {\mathbf {h}} \right\| )\). Thus, (33) simplifies to

$$\begin{aligned} X_1&= \left| {\rho \sqrt{\lambda _1 }+\sqrt{1-\rho ^{2}}\left( {z_1 +\hbox {j}z_2 } \right) } \right| ^{2}c_{I}\end{aligned}$$
(34)
$$\begin{aligned} X_1&= \left( {A+Z_1 } \right) ^{2}+Z_2^2 \end{aligned}$$
(35)

where \(A=\sqrt{\lambda _1 \rho ^{2}c_{I}}\) and \(Z_i =\sqrt{\left( {1-\rho ^{2}} \right) c_{I}}z_i , \,i = 1, 2\). Therefore, given \(A, \,X_{1}\) has a noncentral chi-square distribution with two degrees of freedom, and PDF

$$\begin{aligned} p_{X_1 \left| A \right. } \left( {x\left| a \right. } \right) =\frac{1}{\left( {1-\rho ^{2}} \right) c_{I}}\exp \left( {-\frac{x+a^{2}}{\left( {1-\rho ^{2}} \right) c_{I}}} \right) J_{0} \left( {\frac{2\hbox {j}a}{\left( {1-\rho ^{2}} \right) c_{I}}\sqrt{x}} \right) \end{aligned}$$
(36)

where \(J_{0}(\cdot )\) is the zeroth-order Bessel function of the first kind, and \(\hbox {j}=\sqrt{-1}\).

However, \(A=\sqrt{\lambda _1 \rho ^{2}c_{I}}\) is Rayleigh distributed with 2\(N_{R}\) degrees of freedom with PDF

$$\begin{aligned} p_A (a)=\frac{2}{\rho ^{4N_{R}}c_{I}^{2N_{R}} \Gamma \left( {2N_{R}} \right) }a^{4N_{R} -1}\exp \left( {-\frac{a^{2}}{\rho ^{2}c_{I}}} \right) \end{aligned}$$
(37)

Integrating the product of (36) and (37) over the variable from 0 to \(\infty \) leads to the following PDF for \(x\) as

$$\begin{aligned} p_{X_1 } (x)&= \int \limits _0^\infty {p_{X_1 \left| A \right. } \left( {x\left| a \right. } \right) } p_A (a)da\end{aligned}$$
(38)
$$\begin{aligned} p_{X_1 } (x)&= \frac{2}{\left( {1-\rho ^{2}} \right) \rho ^{4N_{R}}c_{I}^{2N_{R} +1} \Gamma \left( {2N_{R}} \right) }\exp \left( {-\frac{x}{\left( {1-\rho ^{2}} \right) c_{I}}} \right) \nonumber \\&\quad \times \int _0^\infty {a^{4N_{R} -1}\exp \left( {-\frac{a^{2}}{\left( {1-\rho ^{2}} \right) \rho ^{2}c_{I}}} \right) J_0 \left( {\frac{2\hbox {j}\sqrt{x}}{\left( {1-\rho ^{2}} \right) c_{I}}a} \right) } da \end{aligned}$$
(39)

From (40), by using [17, equation(6.631.1)] we obtain

$$\begin{aligned} p_{X_1 } (x)=\frac{\left( {1-\rho ^{2}} \right) ^{2N_{R} -1}}{c_{I}}\exp \left( {-\frac{x}{\left( {1-\rho ^{2}} \right) c_{I}}} \right) {}_1 F_1 \left( {2N_{R} ,1;\frac{\rho ^{2}}{\left( {1-\rho ^{2}} \right) c_{I}}x} \right) \end{aligned}$$
(40)

where \(_1 F_1 \left( {\alpha ,\beta ;z} \right) \) is Kummer confluent hypergeometric function [17]. By applying equations given in [18, 19] we have

$$\begin{aligned} {}_1 F_1 \left( {2N_{R} ,1;\frac{\rho ^{2}}{\left( {1-\rho ^{2}} \right) c_{I}}x} \right)&= \exp \left( {\frac{\rho ^{2}x}{\left( {1-\rho ^{2}} \right) c_{I}}} \right) \nonumber \\&\times \sum _{k=0}^{2N_{R} -1} {\left( {{\begin{array}{l} {2N_{R} -1} \\ {2N_{R} -1-k} \\ \end{array}}} \right) } \frac{\rho ^{2k}}{k\hbox {!}\left( {1-\rho ^{2}} \right) ^{k}c_{I}^k }x^{k} \end{aligned}$$
(41)

Plugging (41) into (40) we obtain

$$\begin{aligned} p_{X_1 } (x)=\sum _{k=0}^{2N_{R} -1} {\left( {{\begin{array}{l} {2N_{R} -1} \\ {2N_{R} -1-k} \\ \end{array}}} \right) } \frac{\rho ^{2k}\left( {1-\rho ^{2}} \right) ^{2N-1-k}}{k\hbox {!}c_{I}^{k+1}}x^{k}\exp \left( {\frac{-x}{c_{I}}} \right) \end{aligned}$$
(42)

The proof of Eq. (30) is similar. The Lemma 1 is demonstrated completely.

Remark 1

It is very interesting that although the calculation process from (31) to (42) is performed under the assumption \(\rho ^{2} <\) 1, the final result (42) is general and can apply to any value of \(\rho \) (which includes \(\rho ^{2} = 1\)). The proof of this observation is not difficult, so it is omitted here for brevity.

Next, we use Lemma 1 to demonstrate Theorem 1. Since \(X_{1}, \,X_{2}\) are independent random variables, thus the PDF of \(\omega \), which \(\omega =X_{1}+X_{2}\), is expressed by

$$\begin{aligned} p_W (\omega )=\int \limits _0^\omega {p_{X_1 } (x)p_{X_2 } \left( {\omega -x} \right) dx} \end{aligned}$$
(43)

Plugging Eqs. (29) and (30) into Eq. (43), we obtain

$$\begin{aligned} p_W (\omega )=\sum _{k_1 =0}^{2N_{R} -1} {\sum _{k_2 =0}^{2N_{R} -1} {a_1 a_2 } \frac{\rho ^{2k_1 +2k_2 }\left( {1-\rho ^{2}} \right) ^{4N_{R} -2-k_1 -k_2 }}{k_1 !k_2 !c_{I}^{k_1 +1} c_Q^{k_2 +1}}} e^{\frac{-\omega }{c_Q }}\int \limits _0^\omega {e^{-\mu x}x^{k_1 }\left( {\omega -x} \right) ^{k_2 }dx}\nonumber \\ \end{aligned}$$
(44)

where \(\left( {{\begin{array}{l} n \\ a \\ \end{array}}} \right) {\triangleq } \frac{n!}{a!\left( {n-a} \right) !}, \,a_1 =\left( {{\begin{array}{l} {2N_{R} -1} \\ {2N_{R} -1-k_1 } \\ \end{array}}} \right) , \,a_2 =\left( {{\begin{array}{l} {2N_{R} -1} \\ {2N_{R} -1-k_2 } \\ \end{array}}} \right) \), and \(\mu =\frac{1}{c_{I}}\) \(-\frac{1}{c_Q }\).

By applying Newton’s binomial

$$\begin{aligned} x^{k_1 }\left( {\omega -x} \right) ^{k_2 }=\sum _{k_3 =0}^{k_2 } {\left( {{\begin{array}{l} {k_2 } \\ {k_3 } \\ \end{array}}} \right) ({-1})^{k_3 }\omega ^{k_2 -k_3 }x^{k_1 +k_3 }} \end{aligned}$$
(45)

we obtain

$$\begin{aligned} p_W (\omega )&= \sum _{k_1 =0}^{2N_{R} -1} {\sum _{k_2 =0}^{2N_{R} -1} {a_1 a_2 } \frac{\rho ^{2k_1 +2k_2 }\left( {1-\rho ^{2}} \right) ^{4N_{R} -2-k_1 -k_2 }}{k_1 !k_2 !c_{I}^{k_1 +1} c_Q^{k_2 +1}}} e^{\frac{-\omega }{c_Q }}\sum _{k_3 =0}^{k_2 } {\left( {{\begin{array}{l} {k_2 } \\ {k_3 } \\ \end{array}}} \right) } ({-1})^{k_3 }\omega ^{k_2 -k_3 }\nonumber \\&\quad \times \int \limits _0^\omega {e^{-\mu x}x^{k_1 +k_3 }dx} \end{aligned}$$
(46)

Then, using Eq. [17, equation (3.351.1)],

$$\begin{aligned} \int \limits _0^\alpha {x^{n}e^{-\mu x}dx} =\frac{n!}{\mu ^{n+1}}-e^{-\mu \alpha }\sum _{k=0}^n {\frac{n!}{k!}\frac{\alpha ^{k}}{\mu ^{n-k+1}}} \end{aligned}$$
(47)

we obtain

$$\begin{aligned} p_W (\omega )&= \sum _{k_1 =0}^{2N_{R} -1} \sum _{k_2 =0}^{2N_{R} -1} {a_1 a_2 } \frac{\rho ^{2\left( {k_1 +k_2 } \right) }\left( {1-\rho ^{2}} \right) ^{4N_{R} -2-k_1 -k_2 }}{k_1 !k_2 !c_{I}^{k_1 +1} c_Q^{k_2 +1}}\nonumber \\&\quad \times \sum _{k_3 =0}^{k_2 } {\left( {{\begin{array}{l} {k_2 } \\ {k_3 } \\ \end{array}}} \right) ({-1})^{k_3 }\frac{\left( {k_1 +k_3 } \right) !}{\mu ^{k_1 +k_3 +1}}\omega ^{k_2 -k_3 }e^{\frac{-\omega }{c_Q }}} \nonumber \\&\quad -\sum _{k_1 =0}^{2N_{R} -1} \sum _{k_2 =0}^{2N_{R} -1} a_1 a_2 \frac{\rho ^{2\left( {k_1 +k_2 } \right) }\left( {1-\rho ^{2}} \right) ^{4N_{R} -2-k_1 -k_2 }}{k_1 !k_2 !c_{I}^{k_1 +1} c_Q^{k_2 +1}}\sum _{k_3 =0}^{k_2 } \left( {{\begin{array}{l} {k_2 } \\ {k_3 } \\ \end{array}}} \right) ({-1})^{k_3 }\nonumber \\&\quad \times \sum _{k_4 =0}^{k_1 +k_3 } {\frac{\left( {k_1 +k_3 } \right) !}{k_4 !\mu ^{k_1 +k_3 -k_4 +1}}} \omega ^{k_2 -k_3 +k_4 }e^{\frac{-\omega }{c_{I}}} \end{aligned}$$
(48)

The Theorem 1 is demonstrated completely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, VB. Performance Analysis of Full-Rate Coordinate Interleaved Orthogonal Designs Over Time-Selective Fading Channels. Wireless Pers Commun 82, 1733–1747 (2015). https://doi.org/10.1007/s11277-015-2309-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2309-2

Keywords

Navigation