Skip to main content
Log in

60 GHz indoor WLANs: insights into performance and power consumption

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents a feasibility study of 60 GHz indoor WLANs. We evaluate 60 GHz performance in a typical academic office building under the primary assumption that 60 GHz WLAN APs and clients will be equipped with relatively wide-beam antennas to cope with client mobility. In contrast to previous works which measured performance at a single layer using custom, non-standard compliant hardware, we investigate performance across multiple layers using primarily 802.11ad-compliant wide-beam COTS devices. Our study shows that the large number of reflective surfaces in typical indoor WLAN environments combined with wider beams makes performance highly unpredictable and invalidates several assumptions that hold true in static, narrow-beam, Line-Of-Sight scenarios. Additionally, we present the first measurements, to our best knowledge, of power consumption of an 802.11ad NIC and examine the impact of a number of factors on power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Commercial hardware often does not report PHY data rate and custom hardware [39] does not provide throughput commensurate with 802.11ad rates.

  2. Note that the throughput corresponding to 385 Mbps data rate in Figs. 11e, f is higher (400/450 Mbps) since higher rates were used in the remaining 10% of the time.

  3. We occasionally observed this value to vary between 3.5 and 4 W, e.g., just after re-connection. We believe that this is an energy bug in the chipset that leaves it in a high-power state after certain specific events.

References

  1. Abari, O., Hassanieh, H., Rodriguez, M., Katabi, D.: Millimeter Wave Communications: from Point-to-Point Links to Agile Network Connections. In: Proceedings of the ACM HotNets (2016).

  2. Smartphones will Account for Nearly Half of Both 802.11ac and 802.11ad Chipset Shipments in 2018. https://www.abiresearch.com/press/smartphones-will-account-for-nearly-half-of-both-8, (2013).

  3. Abouelseoud, M., Charlton, G.: The effect of human blockage on the performance of millimeter-wave access link for outdoor coverage. In: Proceedings of the IEEE Vehicular Technology Conference Spring (VTC-Spring) (2013)

  4. Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.

    Article  Google Scholar 

  5. ath10k: mac80211 wireless driver for qualcom atheros qca988x family of chips. http://wireless.kernel.org/en/users/Drivers/ath10k.

  6. PCI EXPRESS X1 to PCI Express Mini interface adapter. http://www.adexelec.com/pciexp.htm.

  7. Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2396–2406.

    Article  Google Scholar 

  8. Dong, K., Liao, X., & Zhu, S. (2012). Link blockage analysis for indoor 60GHz radio systems. Electronic Letters, 48(23), 1506–1508.

    Article  Google Scholar 

  9. Haider, M.K., Knightly, E.W.: Mobility Resilience and Overhead Constrained Adaptation in Directional 60 GHz WLANs: Protocol Design and System Implementation. In: Proceedings of the ACM MobiHoc (2016).

  10. Halperin, D., Greenstein, B., Sheth, A., Wetherall, D.: Demystifying 802.11n power consumption. In: Proceedings of the USENIX Workshop on Power Aware Computing and Systems (2010)

  11. Halperin, D., Kandula, S., Padhye, J., Bahl, P., Wetherall, D.: Augmenting data center networks with multi-gigabit wireless links. In: Proceedings of the ACM SIGCOMM (2011)

  12. Huang, J., Qian, F., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: A Close Examination of Performance and Power Characteristics of 4G LTE Networks. In: Proceedings of ACM Mobisys (2012)

  13. HXI Gigalink 6651. http://www.hxi.com/doc/hximodel6651-10-30-2013.

  14. Langen, B., Lober, G., Herzig, W.: Reflection and transmission behavior of building materials at 60 GHz. In: Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (1994).

  15. Maltsev, A., Maslennikov, R., Sevastyanov, A., Khoryaev, A., & Lomayev, A. (2009). Experimental investigations of 60 GHz WLAN systems in office environment. IEEE Journal on Selected Areas in Communications (JSAC), 27(8), 1488–1499.

    Article  Google Scholar 

  16. Rasekh, M.E., Marzi, Z., Zhu, Y., Madhow, U., Zheng, H.: Noncoherent mmWave path tracking . In: Proceedings of the ACM HotMobile (2016).

  17. Monsoon power monitor. http://www.msoon.com/LabEquipment/PowerMonitor/.

  18. Mudumbai, R., Singh, S., Madhow, U.: Medium Access Control for 60 GHz Outdoor Mesh Networks with Highly Directional Links. In: Proceedings of the IEEE INFOCOM 2009, Mini Conference (2009)

  19. Nitsche, T., Bielsa, G., Tejado, I., Loch, A., Widmer, J.: Boon and bane of 60 GHz networks: practical insights into beamforming, interference, and frame level operation. In: Proceedings of the 11th ACM/SIGCOMM International Conference on Emerging Networking EXperiments and Technologies (CoNEXT) (2015)

  20. Rappaport, T. S., Felix Gutierrez, J., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 4(61), 1850–1859.

    Article  Google Scholar 

  21. Rappaport, T. S., Heath, R. W, Jr., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. Upper Saddle River: Prentice Hall.

    Google Scholar 

  22. Saha, S.K., Deshpande, P., Inamdar, P.P., Sheshadri, R.K., Koutsonikolas, D.: Power-throughput tradeoffs of 802.11n/ac in smartphones. In: Proceedings of the IEEE INFOCOM (2015).

  23. Saha, S.K., Sun, L., Koutsonikolas, D.: Improving connectivity, coverage, and capacity in 60 GHz indoor WLANs using relays. In: ACM MobiCom \(\text{S}^3\) Workshop (2015)

  24. Sato, K., Manabe, T.: Estimation of propagation-path visibility for indoor wireless lan systems under shadowing condition by human bodies. In: Proceedings of the IEEE Vehicular Technology Conference (1998).

  25. SiBEAM Captures World’s First 60GHz Millimeter-Wave Smartphone Design Win in Letv’s Flagship Smartphone, Le Max. http://www.businesswire.com/news/home/20150519005350/en/SiBEAM-Captures-World’s-60GHz-Millimeter-Wave-Smartphone-Design#.VZM9AkT9q9s.

  26. Singh, S., Mudumbai, R., & Madhow, U. (2011). Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control. IEEE/ACM Transactions on Networking, 19(5), 1513–1527.

    Article  Google Scholar 

  27. Singh, S., Ziliotto, F., Madhow, U., Belding, E.M., Rodwel, M.: Distributed coordination with deaf neighbors: efficient medium access for 60 GHz mesh networks. In: Proceedings of the IEEE INFOCOM 2010 (2010).

  28. Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: from cross-layer model to multihop MAC design. IEEE Journal on Selected Areas in Communications (JSAC), 27(8), 1400–1413.

    Article  Google Scholar 

  29. Smulders, P. F. M. (2009). Statistical characterization of 60-ghz indoor radio channels. IEEE Transactions on Antennas and Propagation, 57(10), 2820–2829.

    Article  Google Scholar 

  30. Smulders, P. F. M., & Correia, L. M. (1997). Characterisation of propagation in 60 GHz radio channels. Electronics & Communication Engineering Journal, 9(2), 73–80.

    Article  Google Scholar 

  31. Sun, L., Sheshadri, R.K., Zheng, W., Koutsonikolas, D.: Modeling WiFi active energy consumption in smartphones for app developers. In: Proceedings of the IEEE ICDCS (2014).

  32. Sur, S., Venkateswaran, V., Zhang, X., Ramanathan, P.: 60 GHz Indoor Networking through Flexible Beams: A Link-Level Profiling. In: Proceedings of the ACM SIGMETRICS (2015).

  33. Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmWave backhaul for 5G networks. IEEE Communications Magazine, 1(53), 195–201.

    Article  Google Scholar 

  34. Sur, S., Zhang, X., Ramanathan, P., Chandra, R.: BeamSpy: Enabling robust 60 GHz links under blockage. In: Proceedings of the USENIX NSDI (2016).

  35. Tie, X., Ramachandran, K., Mahindra, R.: On 60 GHz wireless link performance in indoor environments. In: Proceedings of the PAM (2012).

  36. GHz development system. https://www.pasternack.com/60-ghz-systems-and-modules-category.aspx.

  37. WARP: Wireless open access research platform. http://warpproject.org/trac.

  38. Warty, N., Sheshadri, R.K., Zheng, W., Koutsonikolas, D.: A first look at 802.11n power consumption in smartphones. In: Proceedings of the ACM Mobicom International Workshop on Practical Issues and Applications in Next Generation Wireless Networks (PINGEN) (2012).

  39. WiMi: Wisconsin Millimeter-wave Software Radio. http://xyzhang.ece.wisc.edu/wimi/index.html.

  40. Xu, H., Kukshya, V., & Rappaport, T. S. (2002). Spatial and temporal characteristics of 60-ghz indoor channels. IEEE Journal on Selected Areas in Communications (JSAC), 20(3), 620–630.

    Article  Google Scholar 

  41. Yunze Zeng Parth H. Pathak, P.M.: A First Look at 802.11ac in Action: Energy Efficiency and Interference Characterization. In: Proceedings of the IFIP Networking (2014).

  42. Zhang, J., Zhang, X., Kulkarni, P., Ramanathan, P.: OpenMili: A 60 GHz software radio platform with a reconfigurable phased-array antenna. In: Proceedings of the ACM MobiCom (2016).

  43. Zhou, A., Zhang, X., Ma, H.: Beam-forecast: Facilitating mobile 60 GHz networks via model-driven beam steering. In: Proceedings of the IEEE INFOCOM (2017).

  44. Zhou, X., Zhang, Z., Zhu, Y., Li, Y., Kumar, S., Vahdat, A., Zhao, B.Y., Zheng, H.: Mirror Mirror on the Ceiling: Flexible Wireless Links for Data Centers. In: Proceedings of the ACM SIGCOMM (2012).

  45. Zhu, Y., Zhang, Z., Marzi, Z., Nelson, C., Madhow, U., Zhao, B.Y., Zheng, H.: Demystifying 60ghz outdoor picocells. In: Proceedings of the ACM MobiCom (2014).

  46. Zhu, Y., Zhou, X., Zhang, Z., Zhou, L., Vahdat, A., Zhao, B.Y., Zheng, H.: Cutting the cord: A robust wireless facilities network for data centers. In: Proceedings of the ACM MobiCom (2014).

  47. IEEE 802.11 Task Group AD. http://www.ieee802.org/11/Reports/tgad_update.htm.

Download references

Acknowledgements

This work was supported in part by NSF grant CNS-1553447. Viral Vijay Vira and Anuj Garg completed this work during their MS studies at the University at Buffalo. The contents of this work are solely the responsibility of the authors and do not represent the opinions or views of Amazon LLC or FactSet Research Systems Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swetank Kumar Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S.K., Malleshappa, D.G., Palamanda, A. et al. 60 GHz indoor WLANs: insights into performance and power consumption. Wireless Netw 24, 2427–2450 (2018). https://doi.org/10.1007/s11276-017-1475-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1475-4

Keywords

Navigation