Skip to main content
Log in

Clustering for determining distributed antenna locations in wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper we extend the concept of the well-known input–output clustering (IOC) technique in Uykan et al. (IEEE Trans Neural Netw 11(4):851–858, 2000) to antenna location optimization problem in wireless networks and propose an input–output space clustering criterion (IOCC) to optimize the locations of the remote antenna units (RAUs) of generalized distributed antenna systems (DASs) under sum power constraint. In IOCC, the input space refers to RAU location space and output space refers to location specific ergodic capacity space for noise-limited environments. Given a location-specific arbitrary desired ergodic capacity function over a geographical area, we define the error as the difference between actual and desired ergodic capacity. Following the major steps of the well-known IOC technique in Uykan et al. (IEEE Trans Neural Netw 11(4):851–858, 2000) and Uykan (IEEE Trans Neural Netw 14(3):708–715, 2003) we show that for the DAS wireless networks: (1) the IOCC provides an upper bound to the cell averaged ergodic capacity error; and (2) the derived upper bound is equal to a weighted quantization error function in location-capacity space (input–output space) and (3) the upper bound can be made arbitrarily small by a clustering process increasing the number of RAUs for a feasible DAS. IOCC converts the RAU location problem into a codebook design problem in vector quantization in inputoutput space, and thus includes the Squared Distance Criterion (SDC) for DAS in Wang et al. (IEEE Commun Lett 13:315–317, 2009) (and other related papers) as a special case, which takes only the input space into account. Computer simulations confirm the theoretical findings and show that the IOCC outperforms the SDC for DAS in terms of the defined cell averaged “effective” ergodic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhuang, H., Dai, L., Xiao, L., & Yao, Y. (2003). Spectral efficiency of distributed antenna system with random antenna layout. Electronics Letters, 39(6), 495–496.

    Article  Google Scholar 

  2. Lee, S.-R., Moon, S.-H., Kim, J.-S., & Lee, I. (2012). capacity analysis of distributed antenna systems in a composite fading channel. IEEE Transactions on Wireless Communications, 11(3), 1076–1086.

    Article  Google Scholar 

  3. Firouzabadi, S., & Goldsmith, A. (2011). Optimal placement of distributed antennas in cellular systems. In IEEE 12th international workshop on signal processing advances in wireless communication (SPAWC-2011) (pp. 461–465).

  4. Sherali, H., Pendyala, C., & Rappaport, T. (1996). Optimal location of transmitters for micro-cellular radio communication system design. IEEE Journal on Selected Areas in Communications, 14(4), 662–673.

    Article  Google Scholar 

  5. Wright, M. (1998). Optimization methods for base station placement in wireless applications. In Proceedings of the vehicular technology conference, Ottawa, Canada, May 1998.

  6. Battiti, R., Brunato, M., & Delai, A. (2003). Optimal wireless access point placement for location-dependent services. Technical Report, University of Trento, Italy, October 2003.

  7. Hurley, S. (2002). Planning effective cellular mobile radio networks. IEEE Transactions on Vehicular Technology, 51(2), 243–253.

    Article  Google Scholar 

  8. Ngadiman, Y., Chew, Y. H., & Yeo, B. S. (2005). A new approach for finding optimal base stations configuration for CDMA systems jointly with uplink and downlink constraints. In Proceedings of the PIMRC 2005 (Vol. 4, pp. 2751–2755), September 2005.

  9. Lieska, K., Laitinen, E., & Lahteenmaki, J. (1998). Radio coverage optimization with genetic algorithms. In Proceedings of the PIMRC1998 (Vol. 1, pp. 318–322), September 1998.

  10. Brigitte, J., & Sebbah, S. (2007). Multi-level tabu search for 3G network dimensioning. In Proceedings of the WCNC 2007 (IEEE Wireless Communications and Networking Conference) (pp. 4411–4416).

  11. Amaldi, E., Capone, A., & Malucelli, F. (2003). Planning UMTS base station location: optimization models with power control and algorithms. IEEE Transactions on Wireless Communications, 2(5), 939–952.

    Article  Google Scholar 

  12. Wang, X., Zhu, P., & Chen, M. (2009). Antenna location design for generalized distributed antenna systems. IEEE Communications Letters, 13, 315–317.

    Article  Google Scholar 

  13. Qian, Y., Chen, M., Wang, X., & Zhu, P. (2009). Antenna location design for distributed antenna systems with selective transmission. In International conference on WCSP (pp. 3893–3897), November 2009.

  14. Zhao, J. et al. (2012). Antenna location design for distributed-antenna based secondary systems. In 8th International conference on wireless communication, networking and mobile computing (WiCOM-2012) (pp. 1–4).

  15. Shen, Y., Tang, Y., Kong, T., & Shao, S. (2007). Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells. IEEE Communications Letters, 11(5), 387–389.

    Article  Google Scholar 

  16. Gan, J., Li, Y., Zhou, S. & Wang, J. (2007). On sum rate of multi-user distributed antenna system with circular antenna layout. In Proceedings of the IEEE 66th vehicular technology conference, (VTC-2007 Fall) (pp. 596–600).

  17. Roh, W., & Paulraj, A. (2002). Outage performance of the distributed antenna systems in a composite fading channel. In Proceedings of the 2002 IEEE VTC (Vol. 3, pp. 1520–1524).

  18. Makhoul, J., Roucos, S., & Gish, H. (1985). Vector quantization in speech coding. Proceedings of the IEEE, 73, 1551–1587.

    Article  Google Scholar 

  19. Park, E. & Lee, I. (2011). Antenna placement for downlink distributed antenna systems with selection transmission. In Proceedings of the 2011 IEEE 73rd VTC-Spring 2011 (pp. 1–5), May 2011.

  20. Lee, C., Park, E., & Lee, I. (2012). Antenna placement designs for distributed antenna systems with multiple-antenna ports. In Proceedings of the IEEE vehicular technology conference (VTC Fall-2012) (pp. 1–5).

  21. Park, E., Lee, S.-R., & Lee, I. (2012). Antenna placement optimization for distributed antenna systems. IEEE Transactions on Wireless Communications, 11(7), 2468–2477.

    Article  Google Scholar 

  22. Zhang, H., Liu, H., et al. (2015). A practical semi-dynamic clustering scheme using affinity propagation in cooperative picocells. IEEE Transactions on Vehicular Technology, 64(9), 4372–4377.

    Article  Google Scholar 

  23. Uykan, Z., Güzelis, C., Celebi, E., & Koivo, H. N. (2000). Analysis of input-output clustering for determining centers of RBFNs. IEEE Transactions on Neural Networks, 11(4), 851–858.

    Article  Google Scholar 

  24. Uykan, Z. (2003). Clustering-based algorithms for single-hidden layer sigmoid perceptron. IEEE Transactions on Neural Networks, 14(3), 708–715.

    Article  Google Scholar 

  25. Lo, T. K. Y. (1999). Maximum ratio transmission. IEEE Transaction on Communications, 47, 1458–1461.

    Article  Google Scholar 

  26. Viterbi, A. J. (1995). CDMA: Principles of spread spectrum communication. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekeriya Uykan.

Appendix

Appendix

In what follows, we examine the global Lipschitz constant of the average SNR function \(\bar{\theta }_{a} \left( \cdot \right)\) in (14) for the interval \(\left[ {d_{min} ,\infty } \right)\) where \(d_{min}\) is the minimum distance between the user and any RAU: We first show that the path loss function \(\varphi \left( d \right) = d^{ - \alpha }\) for the interval \(\left[ {d_{min} ,\infty } \right)\) has the Lipschitz constant as \(\vartheta = \alpha /d_{min}^{(\alpha + 1)}\), where \(\alpha\) is the path loss exponent: Because \(\varphi \left( d \right) = d^{ - \alpha }\) is a differentiable function in \(\left[ {d_{min} ,\infty } \right)\), we can apply the mean value theorem \(\forall d_{i} ,d_{j} \in \left[ {d_{min} ,\infty } \right)\) as follows:

$$\varphi \left( {d_{i} } \right) - \varphi \left( {d_{j} } \right) = \left( {d_{i}^{ - \alpha } - d_{j}^{ - \alpha } } \right) \, \varphi^{\prime}\left( {\mu d_{i} + (1 - \mu )d_{j} } \right),$$
(45)

where \(\mu \in \left[ {0, \, 1} \right]\). The derivative of \(\varphi \left( d \right)\) is \(\varphi^{\prime}\left( d \right) = - \alpha d^{{ - \left( {\alpha + 1} \right)}}\). So, the absolute value of the derivative for the interval \(\left[ {d_{min} ,\infty } \right)\) is at \(d = d_{\hbox{min} }\). Thus,

$$\left| {\varphi \left( {d_{i} } \right) - \varphi \left( {d_{j} } \right)} \right| \le \vartheta \left| {d_{i} - d_{j} } \right|$$
(46)

where \(\vartheta = \alpha /d_{min}^{(\alpha + 1)}\) is the Lipschitz constant of the path loss function \(\varphi \left( d \right)\).

It’s assumed that large-scale and small-scale fading random variables \(s_{n}\) and \(g_{{n,{\mathbf{x}}}}\) are independent, and the average large-scale fading \({\rm E}_{s} \left\{ {s_{n} } \right\}\) depends on RAU location. Denoting the average small-scale fadings at locations \({\mathbf{x}}_{i}\) and \({\mathbf{x}}_{j}\) as \(\bar{g}_{{n,{\mathbf{x}}_{i} }} = {\rm E}_{h} \left\{ {g_{n} \left( {{\mathbf{x}}_{i} } \right)} \right\}\) and \(\bar{g}_{{n,{\mathbf{x}}_{j} }} = {\rm E}_{h} \left\{ {g_{n} \left( {{\mathbf{x}}_{j} } \right)} \right\}\), respectively, we define

$$\gamma = \left| {\frac{{\hbox{max} \left\{ {\bar{g}_{{n,{\mathbf{x}}}} \left\| {{\mathbf{x}}_{i} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } ,\bar{g}_{{n,{\mathbf{c}}_{k} }} \left\| {{\mathbf{x}}_{j} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } } \right\}}}{{\left| {\left\| {{\mathbf{x}}_{i} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } - \left\| {{\mathbf{x}}_{j} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } } \right|}}} \right|.$$
(47)

Using (47) and the fact that the pathloss function \(\varphi \left( d \right) = d^{ - \alpha }\) is a decreasing function, we observe that

$$\begin{aligned} \left| {\bar{g}_{{n,{\mathbf{x}}_{i} }} \left\| {{\mathbf{x}}_{1} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } - \bar{g}_{{n,{\mathbf{x}}_{j} }} \left\| {{\mathbf{x}}_{2} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } } \right| \hfill \\ \, \le \gamma \left| {\left\| {{\mathbf{x}}_{1} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } - \left\| {{\mathbf{x}}_{2} - {\mathbf{c}}_{k} } \right\|_{2}^{ - \alpha } } \right|. \hfill \\ \end{aligned}$$
(48)

From the average SNR function \(\bar{\theta }_{a} \left( \cdot \right)\) in (14), we have

$$\left\| {\bar{\theta }_{a} \left( {{\mathbf{x}}_{i} } \right) - \bar{\theta }_{a} \left( {{\mathbf{x}}_{j} } \right)} \right\|_{1} = \frac{1}{{\sigma_{\varsigma }^{2} }}\sum\limits_{k = 1}^{K} {\bar{s}_{n} \left\| {\bar{g}_{{k,{\mathbf{x}}_{i} }} \varphi \left( {\left\| {{\mathbf{x}}_{i} - {\mathbf{c}}_{k} } \right\|_{2} } \right) - \bar{g}_{{k,{\mathbf{x}}_{j} }} \varphi \left( {\left\| {{\mathbf{x}}_{j} - {\mathbf{c}}_{k} } \right\|_{2} } \right)} \right\|_{1} } .$$
(49)

Using (46), (48), and applying the triangular rule and the definition of the \(l_{1}\)-norm of a vector,

$$\left\| {\bar{\theta }_{a} \left( {{\mathbf{x}}_{i} } \right) - \bar{\theta }_{a} \left( {{\mathbf{x}}_{j} } \right)} \right\|_{1} \le \nu_{glob} \left\| {{\mathbf{x}}_{i} - {\mathbf{x}}_{j} } \right\|_{2} ,\quad \forall {\mathbf{x}}_{i} ,{\mathbf{x}}_{j} \in \bar{\varOmega },$$
(50)

where \(\nu_{glob} = \alpha \gamma \left( {\sum\nolimits_{k = 1}^{K} {p_{k} \bar{s}_{k} } } \right)/\left( {\sigma_{\varsigma }^{2} d_{\hbox{min} }^{{\left( {\alpha + 1} \right)}} } \right)\), in which \(\alpha\) is the path loss exponent, \(\gamma\) is related to the average small-scale fading as defined in (47), \(p_{k}\) is the transmit power of the kth RAU, \(\bar{s}_{k}\) is the average large-scale fading coefficient related to the kth RAU, \(\sigma_{\varsigma }^{2}\) is the average noise power, and \(d_{\hbox{min} }\) is the minimum distance between user location and any RAU. Equation (50) shows that the average SNR function \(\theta_{a} \left( \cdot \right)\) in (14) has a global Lipschitz constant \(\nu_{glob}\) for the interval \(\left[ {d_{min} ,\infty } \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uykan, Z., Jäntti, R. Clustering for determining distributed antenna locations in wireless networks. Wireless Netw 24, 1857–1871 (2018). https://doi.org/10.1007/s11276-016-1437-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1437-2

Keywords

Navigation