Skip to main content
Log in

iTCP: an intelligent TCP with neural network based end-to-end congestion control for ad-hoc multi-hop wireless mesh networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Maintaining the performance of reliable transport protocols, such as transmission control protocol (TCP), over wireless mesh networks (WMNs) is a challenging problem due to the unique characteristics of data transmission over WMNs. The unique characteristics include multi-hop communication over lossy and non-deterministic wireless mediums, data transmission in the absence of a base station, similar traffic patterns over neighboring mesh nodes, etc. One of the reasons for the poor performance of conventional TCP variants over WMNs is that the congestion control mechanisms in conventional TCP variants do not explicitly account for these unique characteristics. To address this problem, this paper proposes a novel artificial intelligence based congestion control technique for reliable data transfer over WMNs. The synergy with artificial intelligence is established by exploiting a carefully designed neural network (NN) in the congestion control mechanism. We analyze the proposed NN based congestion control technique in detail and incorporate it into TCP to create a new variant that we name as intelligent TCP or iTCP. We evaluate the performance of iTCP using both ns-2 simulations and real testbed experiments. Our evaluation results demonstrate that our proposed congestion control technique exhibits a significant improvement in total network throughput and average energy consumption per transmitted bit compared to the congestion control techniques used in other TCP variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Even though we start our simulation with a low-bandwidth radio, later (Sects. 6.5, 6.6) we analyze the performance of iTCP using high-bandwidth radios. Moreover, we also perform testbed evaluation (Sect. 7) with high-bandwidth radios. In these cases, we also enable high-data-rate flows over the network.

  2. The routing protocol basically makes no significant difference in the outcome of congestion control mechanism. Therefore, we utilize DSDV in our simulation due to the wide utilization of its ns-2 module. However, as there is little utilization of DSDV in real deployments, we utilize a more realistic routing protocol, OLSR, later in this paper while experimenting over a real testbed (Sect. 7).

  3. We utilize 802.11g as many real deployments of WMNs [12, 12, 12, 75] currently utilize 802.11a/b/g.

References

  1. Abdeljaouad, I., Rachidi, H., Fernandes, S., & Karmouch, A. (2010). Performance analysis of modern TCP variants: A comparison of cubic, compound and new reno. In 2010 25th Biennial symposium on Communications (QBSC), pp. 80–83. IEEE, 2010.

  2. Akyildiz, I. F., Wang, W., & Wang, X. (2005). Wireless mesh networks: A survey. Computer Networks and ISDN Systems, 47(4), 445–487.

    Article  MATH  Google Scholar 

  3. Akyildiz, I. F., & Xie, J. (2004). A survey of mobility management in next-generation all-IP-based wireless systems. Wireless Communications, IEEE, 11(4), 16–28.

    Article  Google Scholar 

  4. Arvidsson, A., & Krzesinski, A. E. (2002). A model of a TCP link. In Proceedings of 15th ITC specialist seminar, internet traffic engineering and traffic management, Wuerzburg, Germany, 2002.

  5. Aziz, A., Starobinski, D., & Thiran, P. (2009). Elucidating the instability of random access wireless mesh networks. In 6th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2009. SECON’09 , pp. 1–9. IEEE, 2009.

  6. Aziz, A., Starobinski, D., & Thiran, P. (2011). Understanding and tackling the root causes of instability in wireless mesh networks. IEEE/ACM Transactions on Networking (TON), 19(4), 1178–1193.

    Article  Google Scholar 

  7. Bakshi, B. S., Krishna, P., Vaidya, N. H., & Pradhan, D. K. (1997). Improving performance of TCP over wireless networks. In Proceedings of the 17th international conference on distributed computing systems, p. 365, May 27–30.

  8. Balakrishnan, H., Seshan, S., Amir, E., & Katz, R. H. (1995). Improving TCP/IP performance over wireless networks. In Proceedings of the 1st annual international conference on mobile computing and networking, pp. 2–11, November 13–15.

  9. Bivens, J. A., Szymanski, B. K., & Embrechts, M. J. (2002). Network congestion arbitration and source problem prediction using neural networks. International Journal of Smart Engineering System Design, 4(4), 243–252.

    Article  Google Scholar 

  10. Brakmo, L. S., & Peterson, L. L. (1995). TCP Vegas: End to end congestion avoidance on a global internet. IEEE Journal on Selected Areas in Communications, 13(8), 1465–1480.

    Article  Google Scholar 

  11. Brosh, E., Baset, S. A., Misra, V., Rubenstein, D., & Schulzrinne, H. (2010). The delay-friendliness of TCP for real-time traffic. IEEE/ACM Transactions on Networking, 18(5), 1478–1491.

    Article  Google Scholar 

  12. Bruno, R., Conti, M., & Gregori, E. (2005). Mesh networks: Commodity multihop ad hoc networks. Communications Magazine IEEE, 43(3), 123–131.

    Article  Google Scholar 

  13. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP Westwood: End-to-end congestion control for wired/wireless networks. Wireless Networks, 8(5), 467–479.

    Article  MATH  Google Scholar 

  14. Chen, L., Low, S. H., & Doyle, J. C. (2005). Joint congestion control and media access control design for ad hoc wireless networks. In Proceedings IEEE 24th annual joint conference of the IEEE computer and communications societies. IN-FOCOM 2005 (Vol. 3, pp. 2212–2222). IEEE, 2005.

  15. Chen, X., & Leslie, I. M. (1991). A neural network approach towards adaptive congestion control in broadband atm networks. In Global telecommunications conference, 1991. GLOBECOM’91’. Countdown to the new millennium. Featuring a mini-theme on: Personal communications services, pp. 115–119. IEEE.

  16. Cho, H. C., Fadali, M. S., & Lee, H. (2005). Neural network control for TCP network congestion. In Proceedings of the 2005, American control conference, 2005, pp. 3480–3485. IEEE, 2005.

  17. Coley, G. (2012). BeagleBone Rev A3 System Reference Manual. Beagleboard. org, Tech. Rep

  18. Combs, G. et al. (2008) .Wireshark-network protocol analyzer. July.

  19. Condensed Transcripts Of MeshDynamics Press Releases. http://www.meshdynamics.com/MDPressTranscripts.html#10.01.07.

  20. Dhoble, K., Nuntalid, N., Indiveri, G., & Kasabov, N. (2012). Online spatio-temporal pattern recognition with evolving spiking neural networks utilising address event representation, rank order, and temporal spike learning. In The 2012 international joint conference on Neural networks (IJCNN), pp. 1–7. IEEE, 2012.

  21. Douligeris, C., & Singh, B. K. (1999). Analysis of neural-network-based congestion control algorithms for ATM networks. Engineering Applications of Artificial Intelligence, 12(4), 453–470.

    Article  Google Scholar 

  22. Dreibholz, T., Becke, M., Pulinthanath, J., & Rathgeb, E. P. (2010). Applying TCP-friendly congestion control to concurrent multipath transfer. In 2010 24th IEEE international conference on advanced information networking and applications (AINA), pp. 312–319. IEEE, 2010.

  23. Du, S., & Yuan, S. (2004). Congestion control for ATM multiplexers using neural networks: Multiple sources/single buffer scenario. Journal of Zhejiang University-Science A, 5(9), 1124–1129.

    Article  Google Scholar 

  24. Duong, L. M. et al. (2012). Metric-based rate control for transport protocols in multi-hop wireless networks. PhD thesis, Université Paris Sud-Paris XI.

  25. Dutta, A., & Das, S. et al. (2006). Comparative analysis of network layer and application layer IP mobility protocols for IPv6 networks. In Wireless personal multimedia communications (WPMC), pp. 6–10. Citeseer.

  26. Dutta, A., Madhani, S., Chen, W., Altintas, O., & Schulzrinne, H. (2004). Fast-handoff schemes for application layer mobility management. In 15th IEEE international symposium on personal, indoor and mobile radio communications, 2004. PIMRC 2004 (Vol. 3, pp. 1527–1532). IEEE, 2004.

  27. Dutta, A., Vakil, F., Chen, J.-C., Tauil, M., Baba, S., Nakajima, N., et al. (2001). Application layer mobility management scheme for wireless internet. In 3G wireless, p. 7, 2001.

  28. Efe, M. Ö. (2008). Novel neuronal activation functions for feedforward neural networks. Neural Processing Letters, 28(2), 63–79.

    Article  Google Scholar 

  29. ElRakabawy, S. M., Klemm, A., & Lindemann, C. (2005). TCP with adaptive pacing for multihop wireless networks. In Proceedings of the 6th ACM international symposium on mobile ad hoc networking and computing, pp. 288–299. ACM, 2005.

  30. Cloud in the City of London. http://www.thecloud.net/.

  31. Fei, X., He, X., Luo, J., Wu, J., & Gu, G. (2000). Fuzzy neural network based traffic prediction and congestion control in high-speed networks. Journal of Computer Science and Technology, 15(2), 144–149.

    Article  MATH  Google Scholar 

  32. Floyd, S. (1994). TCP and explicit congestion notification. ACM SIGCOMM Computer Communication Review, 24(5), 8–23.

    Article  MathSciNet  Google Scholar 

  33. Floyd, S. (2003). HighSpeed TCP for large congestion windows. RFC Editor.

  34. Floyd, S., Henderson, T., & Gurtov, A. (1999). The newreno modification to TCP’s fast recovery algorithm. RFC 2582.

  35. Floyd, S., Mahdavi, J., Podolsky, M., & Mathis, M. (2000). An extension to the selective acknowledgement (SACK) option for TCP. RFC Editor.

  36. Fu, C. P., & Liew, S. C. (2003). TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE Journal on Selected Areas in Communications, 21(2), 216–228.

    Article  Google Scholar 

  37. Fu, Z., Luo, H., Zerfos, P., Lu, S., Zhang, L., & Gerla, M. (2005). The impact of multihop wireless channel on TCP performance. IEEE transactions on Mobile Computing, 4(2), 209–221.

    Article  Google Scholar 

  38. Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., & Gerla, M. (2003). The impact of multihop wireless channel on TCP throughput and loss. In Twenty-second annual joint conference of the IEEE computer and communications. INFOCOM 2003 (Vol. 3, pp. 1744–1753). IEEE, 2003.

  39. Gandikota, V. R., Tamma, B. R., & Murthy, C. (2008). Adaptive fec-based packet loss resilience scheme for supporting voice communication over ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(10), 1184–1199.

    Article  Google Scholar 

  40. Gilmore, J. F., & Abe, N. (1995). Neural network models for traffic control and congestion prediction. Journal of Intelligent Transportation Systems, 2(3), 231–252.

    Google Scholar 

  41. Gupta, S., & Kumar, V. (2012). Traffic and congestion control in ATM networks using neuro-fuzzy approach. IJCA special issue on Communication Security, (1).

  42. Ha, S., Rhee, I., & Cubic, L Xu. (2008). A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42(5), 64–74.

    Article  Google Scholar 

  43. Habachi, O., Shiang, H. P., van der Schaar, M., & Hayel Y. (2012). Online learning based congestion control for dynamic multimedia transmission. Draft, UCLA.

  44. Habib, I., Tarraf, A., & Saadawi, T. (1997). A neural network controller for congestion control in ATM multiplexers. Computer networks and ISDN systems, 29(3), 325–334.

    Article  Google Scholar 

  45. Hecht-Nielsen, R. (1988). Theory of the backpropagation neural network. In International joint conference on neural networks, 1989. IJCNN, pp. 593–605. IEEE.

  46. Hirel, J., Gaussier, P., & Quoy, M. (2011). Biologically inspired neural networks for spatio-temporal planning in robotic navigation tasks. In 2011 IEEE international conference on robotics and biomimetics (ROBIO), pp. 1627–1632. IEEE, 2011.

  47. Holland, G., & Vaidya, N. (2002). Analysis of TCP performance over mobile ad hoc networks. Wireless Networks, 8(2/3), 275–288.

    Article  MATH  Google Scholar 

  48. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of the 7th annual international conference on Mobile computing and networking, pp. 236–251. ACM.

  49. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings National Academy of Sciences, 79, 2554–2558.

    Article  MathSciNet  Google Scholar 

  50. Houmkozlis, C. N., & Rovithakis, G. A. (2009). Fairness guarantees in a neural network adaptive congestion control framework. IEEE Transactions on Neural Networks, 20(3), 527–533.

    Article  Google Scholar 

  51. How Wireless Mesh Networks Work. http://communication.howstuff-works.com/how-wireless-mesh-networks-work2.htm.

  52. Hull, B., Jamieson, K., & Balakrishnan, H. (2004). Mitigating congestion in wireless sensor networks. In Proceedings of the 2nd international conference on embedded networked sensor systems, pp. 134–147. ACM.

  53. Islam, A. B. M. A. A., Alam, S. M., Raghunathan, V., & Bagchi, S. (2012). Multi-armed bandit congestion control in multi-hop infrastructure wireless mesh networks. In 2012 IEEE 20th international symposium on modeling, analysis & simulation of computer and telecommunication systems (MASCOTS), pp. 31–40. IEEE, 2012.

  54. Islam, A. B. M. A. A., Hossain, M. S., & Raghunathan, V. (2012). QRTT: Stateful round trip time estimation for wireless embedded systems using-learning. Embedded Systems Letters, IEEE, 4(4), 102–105.

    Article  Google Scholar 

  55. Islam, A. B. M. A. A., Hossain, M. S., Raghunathan, V., & Hu, Y. C. (2011). Backpacking: Deployment of heterogeneous radios in high data rate sensor networks. In 2011 Proceedings of 20th international conference on computer communications and networks (ICCCN), pp. 1–8. IEEE.

  56. Islam, A. B. M. A. A., Hossain, M. S., & Raghunathan, V. (2012). Dynamic clustering with relay nodes (DCRN): A clustering technique to maximize stability in wireless sensor networks with relay nodes. International Journal of Communications, Network and System Sciences, 5(6), 368–385.

    Article  Google Scholar 

  57. Islam, A. B. M. A. A., Hyder, C. S., Kabir, H., & Naznin, M. (2010). Finding the optimal percentage of cluster heads from a new and complete mathematical model on leach. Wireless Sensor Network, 2(2), 129–140.

    Article  Google Scholar 

  58. Islam, A. B. M. A. A., & Raghunathan, V. (2011). End-to-end congestion control in wireless mesh networks using a neural network. In 2011 IEEE, wireless communications and networking conference (WCNC), pp. 677–682. IEEE.

  59. Jacobson, V. (1988). Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 18(4), 314–329.

    Article  Google Scholar 

  60. Jagannathan, S., & Talluri, J. (2002). Predictive congestion control of ATM networks: Multiple sources/single buffer scenario. Automatica, 38(5), 815–820.

    Article  MATH  MathSciNet  Google Scholar 

  61. Jehan, M., Radhamani, G., & Kalakumari, T. (2011). Vegas: Better performance than other TCP congestion control algorithms on manets. International Journal of Computer Networks (IJCN), 3(2), 151–158.

    Google Scholar 

  62. Jin, C., Wei, D. X., & Low, S. H. (2004). Fast TCP: Motivation, architecture, algorithms, performance. In Twenty-third annual joint conference of the IEEE computer and communications societies. INFOCOM 2004, (Vol. 4, pp. 2490–2501). IEEE.

  63. Karn, P., & Partridge, C. (1987). Improving round-trip time estimates in reliable transport protocols. ACM SIGCOMM Computer Communication Review, 17(5), 2–7.

    Article  Google Scholar 

  64. Lee, J., & Elmasry, G. F. (2012). Method and system for traffic flow control in a communication network, January 24 2012. US Patent 8,102,768.

  65. Liu, C., Shen, F., & Sun, M.-T. (2007). A unified TCP enhancement for wireless mesh networks. In Proceedings of the internationall conference parallel processing, pp. 71–76, September 2007.

  66. Liu, J., & Singh, S. (2002). ATCP: TCP for mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 19(7), 1300–1315.

    Article  Google Scholar 

  67. Liu, S., Basar, T., & Srikant, R. (2006) TCP-illinois: A loss and delay-based congestion control algorithm for high-speed networks. In Proceedings of the international conference on performance evaluation methodologies and tools (VALUETOOLS), October 11–13 2006.

  68. Lochert, C., Scheuermann, B., & Mauve, M. (2007). A survey on congestion control for mobile ad hoc networks. Wireless Communications and Mobile Computing, 7(5), 655–676.

    Article  Google Scholar 

  69. Lundsten, E. (2002). Improving 3g performance for the mobile internet. Stockholm: KTH and Telia Research.

    Google Scholar 

  70. Marfia, G., Lutterotti, P., Eidenbenz, S., Pau, G., & Gerla, M. (2008) Faircast: Fair multi-media streaming in ad hoc networks through local congestion control. In Proceedings of the 11th international symposium on modeling, analysis and simulation of wireless and mobile systems, pp. 2–9. ACM, 2008.

  71. Mathis, M., & Mahdavi, J. (1996). Forward acknowledgement: Refining TCP congestion control. In Proceedings of the conference on applications, technologies, architectures, and protocols for computer communications, pp. 281–291, August 28–30.

  72. Ozone’s mesh network in Paris. http://www.ozone.net/en/.

  73. Mini Wireless N USB Adapter. http://www.trendnet.com/products/prod-detail.asp?prod=190_TEW-648UB&cat=175.

  74. Molle, C., & Voge, M. E. (2009). Effects of the acknowledgment traffic on the capacity of wireless mesh networks. In IEEE 69th vehicular technology conference, 2009. VTC Spring 2009, pp. 1–5. IEEE.

  75. Murty, R. N., Mainland, G., Rose, I., Chowdhury, A. R., Gosain, A., Bers, J., & Welsh, M. (2008). Citysense: An urban-scale wireless sensor network and testbed. In 2008 IEEE conference on technologies for homeland security, pp. 583–588. IEEE.

  76. Oyman, O., Laneman, N. J., & Sandhu, S. (2007). Multihop relaying for broadband wireless mesh networks: From theory to practice. IEEE Communications Magazine, 45(11), 116–122.

    Article  Google Scholar 

  77. Paxson, V., & Allman, M. (2000). Computing TCP’s retransmission timer. Technical report, RFc 2988, November.

  78. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In Proceedings of SIGCOMM, pp. 234–244. August.

  79. Persson, A., Marcondes, C. A. C., Sanadidi, M. Y., & Gerla, M. (2008). TCP Westwood experiments over large bandwidth-delay product networks. Draft, UCLA.

  80. Peterson, L. L., & Davie, B. S. (2007). Computer networks: A systems approach. San Francisco, CA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  81. Premalatha, N., & Natarajan, A. M. (2012). Mitigating congestion in wireless networks by using TCP variants. European Journal of Scientific Research, 70(3), 408–422.

    Google Scholar 

  82. Qi, B., Biaz, S., & Shen, F. (2010). Accurate assessment of link loss rate in wireless mesh networks. In 2010 seventh international conference on Information technology: New generations (ITNG), pp. 862–866. IEEE.

  83. Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. Signal Processing Magazine, IEEE, 19(2), 40–50.

    Article  Google Scholar 

  84. Rangwala, S., Jindal, A., Jang, K. Y., Psounis, K., & Govindan, R. (2008). Understanding congestion control in multi-hop wireless mesh networks. In Proceedings of the 14th ACM international conference on Mobile computing and networking, pp. 291–302. ACM.

  85. Rangwala, S., Jindal, A., Jang, K.-Y., Psounis, K., & Govindan, R. (2011). Neighborhood-centric congestion control for multihop wireless mesh networks. IEEE/ACM Transactions on Networking (TON), 19(6), 1797–1810.

    Article  Google Scholar 

  86. Rath, H. K., & Karandikar, A. (2008). On cross layer congestion control for CDMA-based ad-hoc networks. In Proceedings of NCC, IIT Bombay.

  87. Two ray ground reflection model. http://www.isi.edu/nsnam/ns/doc/node-219.html.

  88. Rouhani, M., Tanhatalab, M. R., & Shokohi-Rostami, A. (2010). Nonlinear neural network congestion control based on genetic algorithm for TCP/IP networks. In 2010 second international conference on computational intelligence, communication systems and networks (CICSyN).

  89. Ruutu, J., & Jian, M. A. (2005). TCP flow control, September 21 2005. EP Patent 1,303,970.

  90. Sankarasubramaniam, Y., Akan, Ö. B., & Akyildiz, I. F. (2003). ESRT: Event-to-sink reliable transport in wireless sensor networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, pp. 177–188. ACM.

  91. Scheuermann, Björn, Lochert, Christian, & Mauve, Martin. (2008). Implicit hop-by-hop congestion control in wireless multihop networks. Ad Hoc Networks, 6(2), 260–286.

    Article  Google Scholar 

  92. Sen, J. (2010). Mobility and handoff management in wireless networks. arXiv preprint arXiv:1011.1956, 2010.

  93. Shiang, H. P., & van der Schaar, M. (2012). A quality-centric TCP-friendly congestion control for multimedia transmission. IEEE Transactions on Multimedia, 14(3), 896–909.

  94. Shih, E., Cho, S. H., Ickes, N., Min, R., Sinha, A., Wang, A., & Chandrakasan, A. (2001). Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In Proceedings of the 7th annual international conference on Mobile computing and networking, pp. 272–287. ACM.

  95. Siekkinen, M., Urvoy-Keller, G., & Biersack, E. (2007). On the interaction between internet applications and TCP (pp. 962–973). Networks: Managing Traffic Performance in Converged.

  96. Siekkinen, M., Urvoy-Keller, G., & Biersack, E. (2007). On the interaction between internet applications and TCP (pp. 962–973). Networks: Managing Traffic Performance in Converged.

  97. Johns Hopkins University SMesh. http://www.smesh.org/.

  98. Song, K. T. J., Zhang, Q., & Sridharan, M. (2006). Compound TCP: A scalable and TCP-friendly congestion control for high-speed networks. In Proceedings of PFLDnet 2006.

  99. Stathopoulos, T., Lukac, M., Mclntire, D., Heidemann, J., Estrin, D., & Kaiser, W.J. (2007). End-to-end routing for dual-radio sensor networks. In IEEE of INFOCOM 2007, 26th IEEE international conference on computer communications, pp. 2252–2260. IEEE.

  100. Stevens, W. (1997). Rfc 2001: TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. January 1997.

  101. Su, Y., & Gross, T. (2005). WXCP: Explicit congestion control for wireless multi-hop networks. In Quality of Service–IWQoS 2005, pp. 313–326. Springer.

  102. Sundaresan, K., Anantharaman, V., Hsieh, H. Y., & Sivakumar, R. (2005). ATP: A reliable transport protocol for ad hoc networks. IEEE Transactions on Mobile Computing, 4(6), 588–603.

  103. Tapson, J. C., Cohen, G. K., Afshar, S., Stiefel, K. M., Buskila, Y., Wang, R. M., et al. (2013). Synthesis of neural networks for spatio-temporal spike pattern recognition and processing. Frontiers in Neuroscience, 7, 153.

  104. Tonnesen, A., Lopatic, T., Gredler, H., Petrovitsch, B., Kaplan, A. & Tucke, S. O. (2010). Olsrd: An ad hoc wireless mesh routing daemon. http://www.olsr.org.

  105. Vlachos, K. G. (2007). Burstification effect on the TCP synchronization and congestion window mechanism. In Fourth international conference on broadband communications, networks and systems, 2007. BROADNETS 2007, pp. 24–28. IEEE.

  106. Waharte, S., Boutaba, R., Iraqi, Y., & Ishibashi, B. (2006). Routing protocols in wireless mesh networks: Challenges and design considerations. Multimedia Tools and Applications, 29(3), 285–303.

    Article  Google Scholar 

  107. Wan, C.-Y., Eisenman, S. B., Campbell, A. T., & Crowcroft, J. (2005). Siphon: Overload traffic management using multi-radio virtual sinks in sensor networks. In SenSys, pp. 116–129, November 2–4.

  108. Wang, J. L. (2004). Adaptive congestion control for ATM UBR service using neural networks. Intelligent Automation and Soft Computing, 10(3), 221–232.

    Article  Google Scholar 

  109. Wei, D. X. & Cao, P. (2006). NS-2 TCP-linux: An NS-2 TCP implementation with congestion control algorithms from linux. In Proceeding from the 2006 workshop on NS-2: The IP network simulator, p. 9. ACM.

  110. WING Wireless Mesh Network for Next-Generation Internet, Italy. http://www.wing-project.org/.

  111. Wischik, D., Raiciu, C., Greenhalgh, A., & Handley, M. (2011). Design, implementation and evaluation of congestion control for multipath TCP. In Proceeding of Usenix NSDI.

  112. Wu, H., Claypool, M., & Kinicki, R. (2005). Adjusting forward error correction with temporal scaling for TCP-friendly streaming MPEG. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 1(4), 315–337.

    Article  Google Scholar 

  113. Wu, H., Feng, Z., Guo, C., & Zhang, Y. (2010). ICTCP: Incast congestion control for TCP in data center networks. In Proceedings of the 6th international conference on emerging Networking EXperiments and Technologies (CoNEXT), pp. 13. ACM.

  114. Xu, C., Wu, Y., & Li, X. (2009). Analysis and improvement of TCP rto mechanism in heterogeneous networks. In 9th international conference on Electronic Measurement & Instruments, 2009. ICEMI’09, pp. 4–589. IEEE.

  115. Xu, K., Gerla, M., Qi, L., & Shu, Y. (2003). Enhancing TCP fairness in ad hoc wireless networks using neighborhood red. In Proceedings of the 9th annual international conference on Mobile computing and networking, pp. 16–28. ACM, 2003.

  116. Xu, L., Harfoush, K., & Rhee, I. (2004). Binary increase congestion control (bic) for fast long-distance networks. In Twenty-third annual joint conference of the IEEE computer and communications societies, INFOCOM 2004. (Vol. 4, pp. 2514–2524). IEEE.

  117. Yi, Yung, & Shakkottai, Sanjay. (2007). Hop-by-hop congestion control over a wireless multi-hop network. IEEE/ACM Transactions on Networking, 15(1), 133–144.

    Article  Google Scholar 

  118. Zhang, G., Wu, Y., & Liu, Y. (2007). Stability and sensitivity for congestion control in wireless mesh networks with time varying link capacities. Ad Hoc Networks, 5(6), 769–785.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. M. Alim Al Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alim Al Islam, A.B.M., Raghunathan, V. iTCP: an intelligent TCP with neural network based end-to-end congestion control for ad-hoc multi-hop wireless mesh networks. Wireless Netw 21, 581–610 (2015). https://doi.org/10.1007/s11276-014-0799-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0799-6

Keywords

Navigation