Skip to main content
Log in

A piecewise geometry method for optimizing the motion planning of data mule in tele-health wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In tele-health wireless sensor networks (WSNs), data mules (DMs) can be despatched to collect and deliver distributed healthcare data via wireless communication. However, to improve the delivery efficiency, it is very important to reduce the data latency. In this paper, we aim at minimizing the data latency through DM motion planning, which includes path selection and speed control. We first model and formulate the problem as a geometric optimization problem and then propose a convex hull based two-phase method. In the first phase of the method, the convex hull structure is utilized to depict a path skeleton, and in the second phase, speed control is considered to regulate the path skeleton. Simulation experiments show that the proposed method exhibits an average of 10–20 % decrease in the latency of data collection. The results suggest that the data collection efficiency can be improved by the proposed method, and the DM approach is feasible and effective for healthcare data delivery in WSN-based tele-health applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alton, G. D., Pearl, D. L., Bateman, K. G., McNab, W. B., & Berke, O. (2012). Suitability of bovine portion condemnations at provincially-inspected abattoirs in Ontario Canada for food animal syndromic surveillance. BMC Veterinary Research, 8(1), 88.

    Article  Google Scholar 

  2. Arora, S. (1998). Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM (JACM), 45(5), 753–782.

    Article  MATH  Google Scholar 

  3. Chen, M., Qiu, M., Liao, L., Park, J., & Ma, J. (2011). Distributed multi-hop cooperative communication in dense wireless sensor networks. The Journal of Supercomputing, 56(3), 353–369.

    Article  Google Scholar 

  4. Dabiri, F., Massey, T., Noshadi, H., Hagopian, H., Lin, C., Tan, R., et al. (2009). A telehealth architecture for networked embedded systems: A case study in vivo home monitoring. Information Technology in Biomedicine, IEEE Transactions on, 13(3), 351–359.

    Article  Google Scholar 

  5. De Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. (2000). Chapter11, convex hulls. In Computational geometry: Algorithms and applications (pp. 2–8). Berlin: Springer.

  6. Flood, M. M. (1956). The travelling-salesman problem. Operations Research, 4, 61–75.

    Article  MathSciNet  Google Scholar 

  7. Garca-Hernando, Martnez-Ortega, L. N., & Prayati, R. L. (2008). Problem solving for wireless sensor networks. In The traveling salesman problem and its variations (pp. 189–240). Berlin: Springer.

  8. Golden, B., Bodin, L., Doyle, T., & Stewart, W. (1980). Approximate traveling salesman algorithms. Operations Research, 28(3-Part-II), 694–711.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu, Y., Bozdağ, D., Brewer, R. W., & Ekici, E. (2006). Data harvesting with mobile elements in wireless sensor networks. Computer Networks, 50(17), 3449–3465.

    Article  MATH  Google Scholar 

  10. He, L., Pan, J., & Xu, J. (2011). Reducing data collection latency in wireless sensor networks with mobile elements. In Computer communications workshops (INFOCOM WKSHPS), 2011 IEEE Conference on (pp. 572–577).

  11. He, L., Pan, J., & Xu, J. (2013). A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 12(7), 1308–1320.

    Article  Google Scholar 

  12. Helsgaun, K. (2009). General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical Programming Computation, 1(2–3), 119–163.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jarvis, R. A. (1973). On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters, 2(1), 18–21.

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, D. S., & McGeoch, L. A. (2004). Experimental analysis of heuristics for the STSP. In The traveling salesman problem and its variations (pp. 369–443). Berlin: Springer.

  15. Kansal, A., Somasundara, A. A., Jea, D. D., Srivastava, M. B., & Estrin, D. (2004). Intelligent fluid infrastructure for embedded networks. In Proceedings of the 2nd international conference on mobile systems, applications, and services, MobiSys ’04 (pp. 111–124). New York, NY, USA: ACM.

  16. Lin, J. S., Huang, S. Y., Pan, K. W., & Liu, S. H. (2009). A physiological signal monitoring system based on an SoC platform and wireless network technologies in homecare technology. Journal of Medical and Biological Engineering, 29(1), 47–51.

    Google Scholar 

  17. Luo, J., & Hubaux, J. P. (2010). Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: The case of constrained mobility. IEEE/ACM Transactions on Networking (TON), 18(3), 871–884.

    Article  Google Scholar 

  18. Ma, M., & Yang, Y. (2007). Sencar: An energy-efficient data gathering mechanism for large-scale multihop sensor networks. Parallel and Distributed Systems, IEEE Transactions on, 18(10), 1476–1488.

    Article  MathSciNet  Google Scholar 

  19. MacGregor, J. N., Ormerod, T. C., & Chronicle, E. (2000). A model of human performance on the traveling salesperson problem. Memory & Cognition, 28(7), 1183–1190.

    Article  Google Scholar 

  20. MacGregor, J. N., & Yun, C. (2011). Human performance on the traveling salesman and related problems: A review. Journal of Problem Solving, 3(2), 1–29.

    Article  Google Scholar 

  21. Mascarenas, D. D., Flynn, E., Lin, K., Farinholt, K., Park, G., Gupta, R., Todd, M., & Farrar, C. (2008). Demonstration of a roving-host wireless sensor network for rapid assessment monitoring of structural health. In Proceedings of SPIE (Vol. 6933, pp. 69,330K–1).

  22. Meeran, S., & Share, A. (1997). Optimum path planning using convex hull and local search heuristic algorithms. Mechatronics (Oxford), 7(8), 737–756.

    Article  Google Scholar 

  23. Pantelopoulos, A., & Bourbakis, N. G. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(1), 1–12.

    Article  Google Scholar 

  24. Poe, W., Beck, M., & Schmitt, J. (2012). Achieving high lifetime and low delay in very large sensors networks using mobile sinks. In Distributed computing in sensor systems (DCOSS), 2012 IEEE 8th international conference on (pp. 17–24).

  25. Preparata, F. P. (1979). An optimal real-time algorithm for planar convex hulls. Communications of the ACM, 22, 402–405.

    Article  MathSciNet  MATH  Google Scholar 

  26. Preparata, F. P., & Hong, S. J. (1977). Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM, 20(2), 87–93.

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiu, M., Chen, M., Liu, M., Liu, S., Li, J., Liu, X., et al. (2010). Online energy-saving algorithm for sensor networks in dynamic changing environments. Journal of Embedded Computing (JEC), 3(3), 289–298.

    Google Scholar 

  28. Qiu, M., & Sha, E. H.-M. (2009). Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 14(2), 1–30.

    Google Scholar 

  29. Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2–3), 215–233.

    Article  Google Scholar 

  30. Somasundara, A., Ramamoorthy, A., & Srivastava, M. (2007). Mobile element scheduling with dynamic deadlines. Mobile Computing, IEEE Transactions on, 6(4), 395–410.

    Article  Google Scholar 

  31. Speedie, S. M., Ferguson, A. S., Sanders, J., & Doarn, C. R. (2008). Telehealth: The promise of new care delivery models. Telemedicine and e-Health, 14(9), 964–967.

    Article  Google Scholar 

  32. Sugihara, R. (2009). Controlled mobility in sensor networks. Ph.D. thesis. La Jolla, CA: University of California at San Diego.

  33. Sugihara, R., & Gupta, R. (2010). Optimal speed control of mobile node for data collection in sensor networks. Mobile Computing, IEEE Transactions on, 9(1), 127–139.

    Article  Google Scholar 

  34. Sugihara, R., & Gupta, R. K. (2007). Data mule scheduling in sensor networks: Scheduling under location and time constraints. UCSD, Technical Report CS2007-0911.

  35. Sugihara, R., & Gupta, R. K. (2010). Speed control and scheduling of data mules in sensor networks. ACM Transactions on Sensor Networks (TOSN), 7(1), 4:1–4:29.

    Article  Google Scholar 

  36. Sugihara, R., & Gupta, R. K. (2011). Path planning of data mules in sensor networks. ACM Transactions on Sensor Networks (TOSN), 8(1), 1:1–1:27.

    Article  Google Scholar 

  37. Tekdas, O., Isler, V., Lim, J. H., & Terzis, A. (2009). Using mobile robots to harvest data from sensor fields. IEEE Wireless Communications, 16(1), 22–28.

    Article  Google Scholar 

  38. Xing, G., Wang, T., Jia, W., & Li, M. (2008). Rendezvous design algorithms for wireless sensor networks with a mobile base station. In Proceedings of the 9th ACM international Symposium on mobile ad hoc networking and computing (pp. 231–240). ACM.

  39. Yuan, B., Orlowska, M., & Sadiq, S. (2007). On the optimal robot routing problem in wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 19(9), 1252–1261.

    Article  Google Scholar 

  40. Zhao, W., Ammar, M., & Zegura, E. (2005). Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies. Proceedings IEEE (Vol. 2, pp. 1407–1418).

Download references

Acknowledgments

This work has been partially supported by the project “Science and Technology Plan of Shandong Province, China (No.2012GB020108)” and the project “National Science Foundation of China (No. 61070022)”. Qiu has been partially supported by the project “National Science Foundation (CNS-1359557)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R., Dai, H., Jia, Z. et al. A piecewise geometry method for optimizing the motion planning of data mule in tele-health wireless sensor networks. Wireless Netw 20, 1839–1858 (2014). https://doi.org/10.1007/s11276-014-0711-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0711-4

Keywords

Navigation