Skip to main content
Log in

Inhibition of biofilm in Bacillus amyloliquefaciens Q-426 by diketopiperazines

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm formation can make significant effects on bacteria habits and biological functions. In this study, diketopiperazines (DKPs) produced by strain of Bacillus amyloliquefaciens Q-426 was found to inhibit biofilm formed in the gas–liquid interface. Four kinds of DKPs were extracted from B. amyloliquefaciens Q-426, and we found that 0.04 mg ml−1 DKPs could obviously inhibit the biofilm formation of the strain. DKPs produced by B. amyloliquefaciens Q-426 made a reduction on extracellular polymeric substance (EPS) components, polysaccharides, proteins, DNAs, etc. Real-time PCR was performed to determine that whether DKPs could make an obvious effect on the expression level for genes related to biofilm formation in the strain. The relative expression level of genes tasA, epsH, epsG and remB which related to proteins, extracellular matrix, and polysaccharides, were downregulated with 0.04 mg ml−1 DKPs, while the expression level of nuclease gene nuc was significantly upregulated. The quantitative results of the mRNA expression level for these genes concerted with the quantitative results on EPS levels. All of the experimental results ultimately indicated that DKPs could inhibit the biofilm formation of the strain B. amyloliquefaciens Q-426.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DKPs:

Diketopiperazines

EPS:

Extracellular polymeric substance

QS:

Quorum sensing

AFM:

Atomic force microscope

CFU:

Colony-forming unit

References

  • Aguilera A, Souza-Egipsy V, Martín-Úriz PS, Amils R (2008) Extraction of extracellular polymeric substances from extreme acidic microbial biofilms. Appl Microbiol Biotechnol 78:1079–1088

    Article  CAS  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  CAS  Google Scholar 

  • Barken KB, Pamp SJ, Yang L, Gjiermansen M, Bertrand JJ, Klausen M (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343

    Article  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  CAS  Google Scholar 

  • Borriss R, Chen X, Rueckert C, Blom J, Becker A, Baumgarth B (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1786–1801

    Article  CAS  Google Scholar 

  • Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241

    Article  CAS  Google Scholar 

  • Byun HG, Zhang HMM, Adachi KSY, Lee WJ (2003) Novel antifungal diketopiperazine from marine fungus. J Antibiot 56:102–106

    Article  CAS  Google Scholar 

  • Campbell J, Lin Q, Geske GD, Blackwell HE (2009) New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 4:1051–1059

    Article  CAS  Google Scholar 

  • Cho JH, Kang JY, Hong YK, Baek HH, Shin HW, Kim MS (2012) Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox 291-11. Biosci Biotechnol Biochem 76:1116–1121

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  Google Scholar 

  • De Carvalho MP, Abraham W-R (2012) Antimicrobial and biofilm inhibiting diketopiperazines. Curr Med Chem 19:3564–3577

    Article  Google Scholar 

  • De Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288

    Article  Google Scholar 

  • Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Ventui V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacteria sensors. Curr Microbiol 45:250–254

    Article  CAS  Google Scholar 

  • Du L, Feng T, Zhao B, Li D (2010) Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot 63:165–170

    Article  CAS  Google Scholar 

  • Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2014) Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int J Biol Macromol 72:1063–1068

    Article  Google Scholar 

  • El-Gendy BEDM, Rateb ME (2015) Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification. Bioorg Med Chem Lett 25:3125–3128

    Article  CAS  Google Scholar 

  • Goncalves MDS, Delattre C, Balestrino D, Charbonnel N, Elboutachfaiti R, Wadouachi A, Badel S, Bernardi T, Michaud P, Forestier C (2014) Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS ONE 9:e99995

    Article  Google Scholar 

  • Gowrishankar S, Poornima B, Pandian SK (2014) Inhibitory efficacy of cyclo(L-leucyl-L-prolyl) from mangrove rhizosphere bacterium-Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutans. Res Microbiol 165:278–289

    Article  CAS  Google Scholar 

  • Holden MTG, Chhabra SR, Denys R, Stead P, Bainton NJ, Hill JP (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  CAS  Google Scholar 

  • Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528

    Article  CAS  Google Scholar 

  • Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK (2004) Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213–8220

    Article  CAS  Google Scholar 

  • Karlowsky JA, Jones ME, Draghi DC, Thornsberry C, Sahm DF, Volturo GA (2004) Prevalence and antimicrobial susceptibilities of bacteria isolated from blood cultures of hospitalized patients in the United States in 2002. Ann Clin Microbiol Antimicrob 3:7

    Article  Google Scholar 

  • Klose KE (2006) Increased chatter: cyclic dipeptides as molecules of chemical communication in Vibrio spp. J Bacteriol 188:2025–2026

    Article  CAS  Google Scholar 

  • Kuier I, Lagendijk E, Pickford R, Derrick J, Lamers G, Thomas-Oates J (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113

    Google Scholar 

  • Kumar SN, Mohandas C, Siji JV, Rajasekharan KN, Nambisan B (2012) Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi. J Appl Microbiol 113:914–924

    Article  Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  Google Scholar 

  • Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian PY (2006) Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22:187–194

    Article  Google Scholar 

  • Li Z, Peng C, Shen Y, Miao X, Zhang H, Lin H (2008) L, L-diketopiperazines from Alcaligenes faecalis A72 associated with south china sea sponge Stelletta tenuis. Biochem Syst Ecol 36:230–234

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012) 2,5-Piperazinedione inhibits quorum sensing-dependent factors production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:1–8

    Article  Google Scholar 

  • O’Toole G, Kaplan H, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci USA 108:7253–7258

    Article  CAS  Google Scholar 

  • Prasad C (1995) Bioactive cyclic dipeptides. Peptides 16:151–164

    Article  CAS  Google Scholar 

  • Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behaviour of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464

    Article  CAS  Google Scholar 

  • Qi SH, Xu Y, Gao J, Qian PY (2009) Antibacterial and antilarval compounds from marine bacterium Pseudomonas rhizosphaerae. Ann Microbiol 59:229–233

    Article  CAS  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    Article  CAS  Google Scholar 

  • Romero D, Vlamakis H, Losick R, Kolter R (2011) An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 80:1155–1168

    Article  CAS  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle J, Lappin-Scott H (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–455

    Article  CAS  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix, an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  Google Scholar 

  • Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190:5690–5698

    Article  CAS  Google Scholar 

  • Tommonaro G, Abbamondi GR, Iodice C, Tait K, De Rosa S (2012) Diketopiperazines produced by the Halophilic Archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb Ecol 63:490–495

    Article  CAS  Google Scholar 

  • Trigos A, Reyna S, Cervantes L (1995) Three diketopiperazines from the cultivated fungus Fusarium oxysporum. Nat Prod Lett 6:241–246

    Article  CAS  Google Scholar 

  • Wang G, Dai S, Chen M, Wu H (2010a) Two diketopiperazine cyclo (Pro-Phe) isomers from marine bacteria Bacillus subtilis sp. 13-2. Chem Nat Compd 46:583–585

    Article  CAS  Google Scholar 

  • Wang JH, Quan CS, Qi XH, Li X, Fan SD (2010b) Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography-mass spectrometry. Anal Bioanal Chem 396:1773–1779

    Article  CAS  Google Scholar 

  • Wang FQ, Tong QY, Ma HR, Xu HF, Hu S, Ma W, Xue YB, Liu JJ, Wang JP, Song HP, Zhang JW, Zhang G, Zhang YH (2015) Indole diketopiperazines from endophytic Chaetomium sp 88194 induce breast cancer cell apoptotic death. Sci Rep 5:9294

    Article  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Article  CAS  Google Scholar 

  • Zhao PC, Quan CS, Jin LM, Wang LN, Wang JH, Fan SD (2013) Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties. World J Microbiol Biotechnol 29:401–409

    Article  Google Scholar 

  • Zhao PC, Quan CS, Wang YG, Wang JH, Fan SD (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f.sp. spinaciae. J Basic Microbiol 54:448–456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Foundation of Key Laboratory of Marine Environmental Corrosion and Bio-fouling (MCKF201402), Institute of Oceanology, Chinese Academy of Sciences, One Hundred-Talent Plan of Chinese Academy of Sciences (CAS) and Research Program of CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation (No. 1189010002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Hua Wang or Chun-Shan Quan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Electrophoresis of total RNA extracted from strain Q-426. M: DL2000; 1, 3: Control samples; 2: Treated with 0.01 mg ml-1 Cyclo (Pro-Phe); 4: Treated with 0.04 mg ml-1 Cyclo (Pro-Phe) (TIFF 1068 kb)

Figure S2

Specific amplification plots of biofilm genes by real time PCR (TIFF 193 kb)

Supplementary material 3 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JH., Yang, CY., Fang, ST. et al. Inhibition of biofilm in Bacillus amyloliquefaciens Q-426 by diketopiperazines. World J Microbiol Biotechnol 32, 143 (2016). https://doi.org/10.1007/s11274-016-2106-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2106-4

Keywords

Navigation