Skip to main content
Log in

Spirotetronate antibiotics with anti-Clostridium activity from Actinomadura sp. 2EPS

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rare actinomycetes strain 2EPS was isolated from soil and analysis of cultural, morphological characteristics, diaminopimelic acid content of its cell wall, and 16S rRNA gene sequence indicates that 2EPS belongs to genus Actinomadura. In addition, neighbor-joining phylogenetic tree also confirmed the relationships of this strain to other members of Actinomadura. A butanol extract with antibacterial activity was purified by reversed-phase chromatography to obtain three bioactive compounds, designated as compounds 1, 2 and 3. The structures of these compounds were determined using spectroscopic analysis (1H-NMR and 13C-NMR) and mass spectrometric analysis (HR-TOF-MS). Compounds 13 were identified and found to be the same as those included in the Japanese patent number JP 09227587 for spirotetronate antibiotics and are BE-45722A (1), BE-45722B (2) and BE-45722C (3), respectively. All compounds were active against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, and B. subtilis ATCC 6633) with low MIC values between 0.08 and 5.0 µg/ml. Moreover, both 1 and 3 also exhibited strong activity, with similar MIC values, against Clostridium perfringens S107 at 0.63 µg/ml and C. difficile 630 at 0.08 µg/ml. These results suggest the identified spirotetronate compounds may have potential in the treatment of Clostridium infections. Overall, this analysis demonstrates that rare actinomycetes are a promising source for discovery of antimicrobial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akama S, Arai Y, Yamamoto H, Akaishi S (1998) Antibacterial substances of Actinomadura species TA-0327. Japan Patent JP 10273497, 13 Oct 1998

  • Bartlett JG (2010) Clostridium difficile: progress and challenges. Ann N Y Acad Sci 1213:62–69

    Article  Google Scholar 

  • Becker B, Lechevalier MP, Lechevalier HA (1965) Chemical composition of cell-wall preparation from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 13:236–243

    CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–28

    Article  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading? J Antibiot 65:385–395

    Article  Google Scholar 

  • Chankhamhaengdecha S, Hadpanus P, Aroonnual A, Ngamwongsatit P, Chotiprasitsakul D, Chongtrakool P, Janvilisri T (2013) Evaluation of multiplex PCR with enhanced spore germination for detection of Clostridium difficile from stool samples of the hospitalized patients. Biomed Res Int 2013:1–6

    Google Scholar 

  • Cook AE, Roes MI, Meyers PR (2005) Actinomadura napierensis sp. nov., isolated from soil in South Africa. Int J Syst Evol Microbiol 55:703–706

    Article  CAS  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  • Grass JE, Gould LH, Mahon BE (2013) Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog Dis 10:131–136

    Article  Google Scholar 

  • Hayakawa M, Sadakata T, Kajiura T, Nonomura H (1991) New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J Ferment Bioeng 72:320–326

    Article  CAS  Google Scholar 

  • He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109–113

    Article  CAS  Google Scholar 

  • Jia X-Y, Tian Z-H, Shao L, Qu X-D, Zhao Q-F, Tang J, Tang G-L, Liu W (2006) Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol 13:575–585

    Article  CAS  Google Scholar 

  • Kelly CP, LaMont JT (2008) Clostridium difficile—more difficult than ever. N Engl J Med 359:1932–1940

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park S-C, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  Google Scholar 

  • Kotoda N, Shin-Ya K, Furihata K, Hayakawa Y, Seto H (1997) Isolation and structure elucidation of novel neuronal cell protecting substances, carbazomadurins A and B produced by Actinomadura madurae. J Antibiot 50:770–772

    Article  CAS  Google Scholar 

  • Lam KS, Hesler GA, Gustavson DR, Berry RI, Tomita K, Macbeth JI, Ross J, Miller D, Forenza S (1996) Pyrrolosporin A, a new antitumor antibiotic from Micromonospora sp. C39217-R109-7 I. Taxonomy of producing organism, fermentation and biological activity. J Antibiot 49:860–864

    Article  CAS  Google Scholar 

  • Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The Actinomycetales. VEB Gustav Fischer Verlag, Jena, pp 393–405

    Google Scholar 

  • Lechevalier MP, Lechevalier H (1970b) Chemical composition as a criterion in the classification of aerobic actenomycetes. Int J Syst Microbiol 20:435–443

    CAS  Google Scholar 

  • Lee SD (2012) Actinomadura rupiterrae sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 62:990–995

    Article  CAS  Google Scholar 

  • Mathura H, O’Connor PM, Hilla C, Cotter PD, Ross RP (2013) Analysis of anti-Clostridium difficile activity of thuricin CD, vancomycin, metronidazole, ramoplanin, and actagardine, both singly and in paired combinations. Antimicrob Agents Chemother 57:2882–2886

    Article  Google Scholar 

  • Mazzetti C, Ornaghi M, Gaspari E, Parapini S, Maffioli S, Sosio M, Donadio S (2012) Halogenated spirotetronates from Actinoallomurus. J Nat Prod 75:1044–1050

    Article  CAS  Google Scholar 

  • Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. Actinomycetologica 7:100–106

    Article  Google Scholar 

  • Momose I, Hirosawa S, Nakamura H, Naganawa H, Iinuma H, Ikeda D, Takeuchi T (1999a) Decatromicins A and B, new antibiotics produced by Actinomadura sp. MK73-NF4. II. Structure determination. J Antibiot 52:787–796

    Article  CAS  Google Scholar 

  • Momose I, Iinuma H, Kinoshita N, Momose Y, Kunimoto S, Hamada M, Takeuchi T (1999b) Decatromicins A and B, new antibiotics produced by Actinomadura sp. MK73-NF4 I. Taxonomy, isolation, physico-chemical properties and biological activities. J Antibiot 52:781–786

    Article  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Bio Evol 10:1073–1095

    CAS  Google Scholar 

  • Saito H, Miura KI (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Senesi S, Ghelardi E (2010) Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins 2:1690–1703

    Article  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Microbiol 16:313–340

    Google Scholar 

  • Sripreechasak P, Tanasupawat S, Suwanborirux K, Inahashi Y, Matsumoto A, Shiomi K, Takahashi Y (2013) Nonomuraea thailandensis sp. nov. isolated from Thai soil. J Antibiot 66:79–84

    Article  CAS  Google Scholar 

  • Tajima K, Takahashi Y, Seino A, Iwai Y, Omura S et al (2001) Description of two novel species of the genus Kitasatospora Omura et al. 1982, Kitasatospora cineracea sp. nov. and Kitasatospora niigatensis sp. nov. Int J Syst Evol Microbiol 51:1765–1771

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tao W, Zhu M, Deng Z, Sun Y (2013) Biosynthesis of tetronate antibiotics: a growing family of natural products with broad biological activities. Sci China Chem 56:1364–1371

    Article  CAS  Google Scholar 

  • Tomita F, Tamaoki T (1980) Tetrocarcins, novel antitumor antibiotics. I. Producing organism, fermentation and antimicrobial activity. J Antibiot 33:940–945

    Article  CAS  Google Scholar 

  • Torigoe K, Nakajima S, Suzuki H, Nagashima M, Ojiri K, Suda H (1997) Antibacterial BE-45722-group substances, their manufacture with Actinomadura, bactericides containing them, and Actinomadura producing them. Japan Patent JP 09227587, 26 Feb 1996

  • Trujillo ME, Goodfellow M (2012) Genus III. Actinomadura. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-i, Ludwig W, Whitman WB (eds) Bergy’s manual of systematic bacteriology: the actinobacteria, Part B. vol 5, 2nd edn. Springer, New York, pp 1940–1958

    Google Scholar 

  • Waitz JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D, Marquez JA, Miller G, Patel MG (1981) Kijanimicin (Sch 25663), a novel antibiotic produced by Actinomadura kijaniata SCC 1256. Fermentation, isolation, characterization and biological properties. J Antibiot 34:1101–1106

    Article  CAS  Google Scholar 

  • Walsh C (2003a) Antibiotics: action, origins, resistance. ASM Press, Washington

    Book  Google Scholar 

  • Walsh C (2003b) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70

    Article  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2001) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 51:373–383

    Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. Ph.D/0103/2552) to JE and WP and by the scholarship from the Japan Student Services Organization (JASSO) to JE. We are grateful to Dr. Laran T. Jensen (Department of Biochemistry, Faculty of Science, Mahidol University) for critically proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Watanalai Panbangred.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Euanorasetr, J., Intra, B., Mongkol, P. et al. Spirotetronate antibiotics with anti-Clostridium activity from Actinomadura sp. 2EPS. World J Microbiol Biotechnol 31, 391–398 (2015). https://doi.org/10.1007/s11274-014-1792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1792-z

Keywords

Navigation