Skip to main content
Log in

Effects of different selenium levels on growth and regulation of laccase and versatile peroxidase in white-rot fungus, Pleurotus eryngii

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 23 April 2014

Abstract

This study was conducted to evaluate the physiological effects of different selenium (Se) levels on the growth of white-rot fungus, Pleurotus eryngii, with special reference to the regulation of ligninolytic enzymes such as laccase and versatile peroxidase. The fungus was grown in medium supplemented with 1, 10, 100, 1,000 and 10,000 μM of sodium selenite. Mycelial growth was stronger at lower Se levels, but declined significantly at higher concentrations of 1,000 and 10,000 μM, highlighting its association in mediating toxic responses. Inhibition of fungal growth was accompanied with dense and entangled hyphae taking the shape of irregular short strips. Additionally, hyphal swellings and septation were noticed which lead to a reduction in the advancement of the mycelium. Along with the inhibition of fungal biomass, the reducing sugar and protein concentrations increased to about 30.2 and 3.5 mg/ml respectively in the growth medium. Additionally, the laccase gene expression showed a twofold upregulation at higher levels of Se, although the activity of the enzyme was compromised with an inverse relationship with increased gene transcripts. The versatile peroxidase transcript showed a complete downregulation at 10,000 μM after an upregulation at lower levels of Se. We also confirmed the direct relationship of different Se levels on laccase activity of Rhus vernicifera that showed similar behavior to the fungal laccase. The results of the present study suggest that Se supplementation regulates mRNA levels of laccase and versatile peroxidase depending on exposure and may play a role in the toxicity associated with Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Badii F, Moss MO, Wilson K (1986) The effect of sodium selenite on the growth and aflatoxin production of Aspergillus parasiticus and the growth of other aspergilli. Lett Appl Microbiol 2:61–64

    Google Scholar 

  • Baldrain P (2005) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  Google Scholar 

  • Bertrand B, Martinez-Morales F, Tinoco R, Rojas-Trejo S, Serrano-Carreon L, Trejo-Hernandez MR (2013) Induction of laccases in Trametes versicolor by aqueous wood extracts. World J Microbiol Biotechnol. doi:10.1007/s11274-013-1420-3

  • Bourbonnais R, Paice MG (1990) Oxidation of nonphenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  Google Scholar 

  • Cilerdzic J, Stajic M, Vukojevic J, Duletic-Lausevic S, Knezevic A (2011) Potential of Trametus hirsuta to produce ligninolytic enzymes during degradation of agricultural residues. BioResources 6:2885–2895

    CAS  Google Scholar 

  • Dominguez A, Rivela I, Couto SR, Sanromán MA (2001) Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem 37:549–554

    Article  Google Scholar 

  • Eliza M, Wojciech K, Franciszek H, Grzegorz L, Joanna S, Piotr S, Mieczyslaw K, Jadwiga T (2009) Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzym Microb Technol 44:334–343

    Article  Google Scholar 

  • Faraco V, Giardina P, Sannia G (2003) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149:2155–2162

    Article  CAS  Google Scholar 

  • Hilden K, Hakala TK, Maijala P, Lundell TK, Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 77:301–309

    Article  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Google Scholar 

  • Hugejiletu H, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ, Hall JA (2013) Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of Sheep. Biol Trace Elem Res 154:21–27

    Article  Google Scholar 

  • Inoue Y, Takayuki H, Shingo K, Okamura H, Nishida T (2010) Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. J Hazard Mat 180:764–767

    Article  CAS  Google Scholar 

  • Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Appl Environ Microbiol 64:3536–3538

    CAS  Google Scholar 

  • Kanwal HK, Reddy MS (2011) Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World J Microbiol Biotechnol 27:687–691

    Article  CAS  Google Scholar 

  • Kilaru S, Hoegger PJ, Kues U (2006) The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 50:45–60

    Article  CAS  Google Scholar 

  • Koeleman M, van der Laak WJ, Ietswaart H (1999) Dispersion of PAH and heavy metals along motorways in The Netherlands: an overview. Sci Total Environ 235:347–349

    Article  CAS  Google Scholar 

  • Li JL, Li HX, Li S, Jiang ZH, Xu SW, Tang ZX (2011) Selenoprotein W gene expression in the gastrointestinal tract of chicken is affected by dietary selenium. Biometals 24:291–299

    Article  CAS  Google Scholar 

  • Liew CY, Husaini A, Hussain H, Muid S, Liew KC, Roslan HA (2011) Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World J Microbiol Biotechnol 27:1457–1468

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Lewis AF, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Chem 193:256–267

    Google Scholar 

  • Manikova D, Vlasakova D, Loduhova J, Letavayova L, Vigasova D, Krascsenitsova E, Vlckova V, Brozmanova J, Chovanec M (2010) Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mutagenesis 25:155–162

    Article  CAS  Google Scholar 

  • Manubens A, Canessa P, Folch C, Avila M, Salas L, Vicuna R (2007) Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiol Lett 275:139–145

    Article  Google Scholar 

  • McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636

    Article  CAS  Google Scholar 

  • Mester T (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeterior Biodegradation 46:51–59

    Article  CAS  Google Scholar 

  • Mikiashvili N, Elisashvili V, Wasser S, Nevo E (2005) Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol Lett 27:955–959

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moss MO, Badii F, Gibbs G (1987) Reduction of biselenite to elemental selenium by Aspergillus parasiticus. Trans Br Mycol Soc 89:578–580

    Article  Google Scholar 

  • Munoz AHS, Kubachka K, Wrobel K, Corona JFG, Yathavakilla SKV, Caruso JA, Wrobel K (2006) Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. J Agric Food Chem 54:3440–3444

    Article  CAS  Google Scholar 

  • Murugesan K, Chang YY, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res 44:298–308

    Article  CAS  Google Scholar 

  • Nakamura Y, Godliving-Sungusia M, Sawada T, Kuwahara M (1999) Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J Biosci Bioeng 88:41–47

    Article  CAS  Google Scholar 

  • Ohga S, Royse DJ (2001) Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Lett 201:111–115

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  Google Scholar 

  • Perez-Boada M, Doyle WA, Ruiz-Duenas FJ, Martinez MJ, Martinez AT, Smith AT (2002) Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimization of in vitro folding. Enzym Microb Tech 30:518–524

    Article  CAS  Google Scholar 

  • Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011) Induction and transcriptional regulation of laccases in fungi. Curr Genomics 12:104–112

    Article  CAS  Google Scholar 

  • Ragab AM, Ramadan SE, Razak AA, Ghonamy EA (1986) Selenium sorption by some selenotolerant fungi. In: Alani DI (ed) Perspectives in biotechnology and applied microbiology, Springer, Netherlands, pp 343–353

  • Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64:1088–1117

    Article  Google Scholar 

  • Rodriguez Couto S, Sanroman MA, Gubitz GM (2005) Influence of redox mediators and metal ions on synthetic acid dye decolorization by crude laccase from Trametes hirsuta. Chemosphere 58:417–422

    Article  CAS  Google Scholar 

  • Rodriguez E, Ruiz-Duenas FJ, Kooistra R, Ram A, Martinez AT, Martinez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19

    Article  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–236

    Article  CAS  Google Scholar 

  • Saparrat M, Balatti PA, Martinez MJ, Jurado M (2010) Differential regulation of laccase gene expression in Coriolopsis rigida LPSC No. 232. Fungal Biol 114:999–1006

    Article  CAS  Google Scholar 

  • Scheel T, Hofer M, Ludwig S, Holker U (2000) Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese aromatic compounds. Appl Microbiol Biotechnol 54:686–691

    Article  CAS  Google Scholar 

  • Shen HM, Yang CF, Ding WX, Liu J, Ong CN (2001) Superoxide radical-initiated apoptotic signaling pathway in selenite-treated HEPG2 cells: mitochondria serve as main target. Free Radic Biol Med 30:9–21

    Article  CAS  Google Scholar 

  • Slusarczyk J, Malinowska E, Krzyczkowski W, Kuras M (2013) Influence of inorganic and organic selenium on number of living mycelial cells and their ultrastructure in culture of Hericium erinaceum (Bull.: Fr. Pers.). Acta Biol Hung 64:96

    Article  CAS  Google Scholar 

  • Soden DM, Dobson ADW (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147:1755–1763

    CAS  Google Scholar 

  • Stajic M, Vukojevic J (2011) Interaction of trace elements and ligninolytic enzymes in Pleurotus eryngii. Biol Trace Elem Res 143:1202–1208

    Article  CAS  Google Scholar 

  • Stajic M, Vukojevic J, Knezevic A, Milovannovic I (2013) Influence of trace elements on ligninolytic enzyme activity of Pleurotus ostreatus and P. pulmonarius. Bioresour Res 8:3027–3037

    Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Yang Y, Fan F, Zhuo R, Ma F, Gong Y, Wan X, Jiang M, Zhang X (2012) Expression of the laccase gene from a white-rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 78:5845–5854

    Article  CAS  Google Scholar 

  • Yaver DS, Golightly EJ (1996) Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa laccase: genomic organization of the laccase gene family. Gene 181:5–102

    Article  Google Scholar 

  • Zhang GQ, Wang YF, Zhang XQ, Ng TB, Wang HX (2010) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45:627–633

    Article  CAS  Google Scholar 

  • Zhang Q, Chen L, Guo K, Zheng L, Liu B, Yu W, Guo C, Liu Z, Chen Y, Tang Z (2013) Effects of different selenium levels on gene expression of a subset of selenoproteins and antioxidative capacity in mice. Biol Trace Elem Res. doi:10.1007/s12011-013-9710-z

  • Zivanovic S, Buescher RW, Kim KS (2000) Textural changes in mushrooms associated with tissue ultrastructure and composition. J Food Sci 65:1404–1408

    Article  CAS  Google Scholar 

  • Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves beta-carotene to flavor compounds. Biol Chem 384:1049–1056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Deuk Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Lee, HS., Kwon, HJ. et al. Effects of different selenium levels on growth and regulation of laccase and versatile peroxidase in white-rot fungus, Pleurotus eryngii . World J Microbiol Biotechnol 30, 2101–2109 (2014). https://doi.org/10.1007/s11274-014-1636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1636-x

Keywords

Navigation