Skip to main content
Log in

Comparative studies to assess bacterial communities on the clover phylloplane using MLST, DGGE and T-RFLP

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) were used to characterise the changes that occurred in Bacillus cereus group strains present in the phylloplane of clover Trifolium hybridum over 4 months. These strains had previously been analysed by multiple locus sequence typing (MLST). DGGE displayed many equally intense bands which indicated many equally abundant ribotypes. The bacterial community composition was variable and the leaves sampled as little as a week apart were found to have some temporal variability, indicating that diverse phylloplane bacterial communities follow sequential patterns from time to time. The B. cereus group community clearly clustered into early, mid and late branches, possibly due to multiple successional sequences occurring during growing seasons. The functionally and phylogenetically diverse microbial communities appeared to exhibit predictable successional patterns over shorter time scales. DGGE analysis with the molecular marker rpoB gave better resolution than 16S rRNA amplicons. There were no strong similarities between the dendrograms produced by DGGE, MLST and T-RFLP and the clustering produced by the automated T-RFLP method was variable even between the three restriction enzymes used. The DGGE–MLST method emerged as a superior method to T-RFLP–MLST for rapid typing of bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen GL, He Z, DeSantis TZ, Brodie EL, Zhou J (2010) The use of microarrays in microbial ecology. In: Liu W-T, Jansson JK (eds) Environmental molecular microbiology. Horizon Scientific, Norfolk

    Google Scholar 

  • Bizzarri MF, Bishop AH (2007) The recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. J Invertebr Pathol 94:38–47

    Article  Google Scholar 

  • Bizzarri MF, Prabhakar A, Bishop AH (2008) Multiple-locus sequence typing analysis of Bacillus thuringiensis recovered from the phylloplane of clover (Trifolium hybridum) in vegetative form. Microb Ecol 55:619–625

    Article  CAS  Google Scholar 

  • Cardazzo B, Negrisolo E, Carraro L, Alberghini L, Patarnello T, Giaccone V (2008) Multiple-locus sequence typing and analysis of toxin genes of Bacillus cereus foodborne isolates. Appl Environ Microbiol 74:850–860

    Article  CAS  Google Scholar 

  • Coelho MRR, Da Mota FF, Carneiro NP, Marriel IE, Paiva E, Rosado AS, Seldin L (2007) Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer accessed by rpoB-based PCR-DGGE and sequencing analysis. J Microbiol Biotechnol 17:753–760

    CAS  Google Scholar 

  • Collier FA, Elliot SL, Ellis RJ (2005) Spatial variation in Bacillus thuringiensis/cereus populations within the phyllosphere of broad-leaved dock (Rumex obtusifolius) and surrounding habitats. FEMS Microbiol Ecol 54:417–425

    Article  CAS  Google Scholar 

  • Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  CAS  Google Scholar 

  • Da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L (2004) Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 39:34–40

    Article  CAS  Google Scholar 

  • Damgaard PH (2000) Natural occurrence and dispersal of Bacillus thuringiensis in the environment. In: Charles J-F, Delecluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic, Dordrecht, pp 23–40

    Chapter  Google Scholar 

  • Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175:1251–1266

    Article  CAS  Google Scholar 

  • Felske AD, Heyrman J, Balcaen A, De Vos P (2003) Multiplex PCR screening of soil isolates for novel Bacillus-related lineages. J Microbiol Methods 55:447–458

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  CAS  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  Google Scholar 

  • Gomes NCM, Kosheleva IA, Abraham WR, Smalla K (2005) Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 54:21–33

    Article  CAS  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø A-B (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolsto AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201

    Article  CAS  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  Google Scholar 

  • Hoffmaster AR, Novak RT, Marston CK, Gee JE, Helsel L (2008) Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol 8:191

    Article  Google Scholar 

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  CAS  Google Scholar 

  • Kropf S, Heuer H, Gruning M, Smalla K (2004) Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. J Microbiol Methods 57:187–195

    Article  CAS  Google Scholar 

  • Legard DE, McQuilken MP, Whipps JM, Fenlon JS, Fermor TR, Thompson IP, Bailey MJ, Lynch JM (1994) Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agric Ecosyst Environ 50:87–101

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  Google Scholar 

  • Meintanis C, Chalkou KI, Kormas KA, Lymperopoulou DS, Katsifas EA, Hatzinikolaou DG, Karagouni AD (2008) Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett Appl Microbiol 46:395–401

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial population by denaturing gradient electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Raffel SJ, Stabb EV, Milner JL, Handelsman J (1996) Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology 142:3425–3436

    Article  CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  Google Scholar 

  • Raymond B, Wyres KL, Sheppard SK, Ellis RJ, Bonsall MB (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 6:1–13

    Article  Google Scholar 

  • Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol 58:189–198

    Article  Google Scholar 

  • Ryu C, Lee K, Hawng HJ, Yoo CK, Seong WK (2005) Molecular characterization of Korean Bacillus anthracis isolates by amplified fragment length polymorphism analysis and multilocus variable-number tandem repeat analysis. Appl Environ Microbiol 71:4664–4671

    Article  CAS  Google Scholar 

  • Ticknor LO, Kolsto AB, Hill KK, Keim P, Laker MT, Tonks M, Jackson PJ (2007) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 67:4863–4873

    Article  Google Scholar 

  • Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N (2007) A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J Clin Microbiol 45:1274–1277

    Article  CAS  Google Scholar 

  • Vilas-Bôas GT, Peruca APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Can J Microbiol 53:673–687

    Article  Google Scholar 

  • Volker SB, Yun L, Sebastien V (2011) Studying the life cycle of aerobic endospore-forming bacteria in soil. In: Logan NA, de Vos P (eds) Endospore forming soil bacteria. Springer, Heidelberg, pp 115–133

    Google Scholar 

Download references

Acknowledgments

Amit Prabhakar was the recipient of a University of Greenwich bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prabhakar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Supplementary material 2 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakar, A., Bishop, A.H. Comparative studies to assess bacterial communities on the clover phylloplane using MLST, DGGE and T-RFLP. World J Microbiol Biotechnol 30, 153–161 (2014). https://doi.org/10.1007/s11274-013-1434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1434-x

Keywords

Navigation