Skip to main content
Log in

Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC50 values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell’s blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge’s extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angerhofer CK, Pezzuto JM, Ko¨ nig GM, Wright AD, Sticher O (1992) Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J Nat Prod 55:1787–1789

    Article  CAS  Google Scholar 

  • Aoki S, Kong D, Suna H, Sowa Y, Sakai T, Setiawan A, Kobayashi M (2006) Aaptamine, a spongean alkaloid, activates p21 promoter in a p53-independent manner. Biochem Biophys Res Commun 342:101–106

    Article  CAS  Google Scholar 

  • Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Amiesen JC (2002) On evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ 9:65–81

    Article  CAS  Google Scholar 

  • Belarbi EH, Gomez AC, Chisti Y, Camacho FG, Grima EM (2003) Producing drugs from marine sponges. Biotech Adv 21:585–598

    Article  CAS  Google Scholar 

  • Bell PB (2004) The non-evolution of apoptosis. TJ 18(1):86–91

    Google Scholar 

  • Brewitt H (1997) Contact lenses: infectious and hygiene. Ophthalmologe 94:311–316

    Article  CAS  Google Scholar 

  • Bruchhaus I, Roeder T, Rennenberg A, Heussler VT (2007) Protozoan parasites: programmed cell death as a mechanism of parasitism. Trend Parasitol 23(8):376–383

    Article  CAS  Google Scholar 

  • Collins AR (2004) Comet Assay for DNA damage and repair: principles, applications and limitations. Mol Biotechnol 26:249–261

    Article  CAS  Google Scholar 

  • Compagnone RS, Pina IC, Rangel HR, Dagger F, Suarez AI, Reddy MVR, Faulkner DJ (1998) Antileishmanial cyclic peroxides from the Palauan sponge Plakortis aff. angulospiculatus. Tetrahedron 54:3057–3068

    Article  CAS  Google Scholar 

  • Copp BR, Kayser O, Brun R, Kiderlen AF (2003) Antiparasitic activity of marine pyridoacridone alkaloids related to the ascididemins. Planta Med 69:527–531

    CAS  Google Scholar 

  • Coutinho AF, Chanas B, Souza TML, Frugrulhetti ICPP, De Epifanio RA (2002) Anti Hsv-1 alkaloids from a feeding deterrent marine sponge of the genus Aaptos. Heterocycles 7:1265–1272

    Google Scholar 

  • Diers JA, Bowling JJ, Duke SO, Wahyuono S, Kelly M, Hamann MT (2006) Zebra mussel antifouling activity of the marine natural product aaptamine and analogs. Mar Biotechnol 8:366–372

    Article  CAS  Google Scholar 

  • Diers JA, Ivey KD, El-Alfy A, Shaikh J, Wang J, Kochanowska AJ, Stoker JF, Hamann MT, Matsumoto RR (2008) Identification of antidepressant drug leads through the evaluation of marine natural products with neuropsychiatric pharmacophores. Pharmacol Biochem Behav 89:46–53

    Article  CAS  Google Scholar 

  • Dube A, Singh N, Saxena A, Lakshmi V (2007) Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol Res 101:317–324

    Article  Google Scholar 

  • Dudley R, Matin A, Alsam S, Sissons J, Maghsood AH, Khan NA (2005) Acanthamoeba isolates belonging to T1, T2, T3, T4 but not T7 encyst in response to increased osmolarity and cysts do not bind to human corneal epithelial cells. Acta Trop 95:100–108

    Article  CAS  Google Scholar 

  • Duke RC, Witter RZ, Nash PB, Young JD, Ojcius DM (1994) Cytolysis mediated by ionophores and pore-forming agents: role of intracellular calcium in apoptosis. Fed Am Soc Exp Biol J 8:237–246

    CAS  Google Scholar 

  • Espino-Cantellano M, González-Robles A, Chávez B, Castañón G, Argüello C, Lázaro-Haller A, Martinez-Palomo A (1998) Entamoeba dispar: ultrastucture, surface properties and cytopathic effect. J Eukaryot Microbiol 45:265–272

    Article  Google Scholar 

  • Fatimah H, Nakisah MA, Ali AM, Aspollah S (2011) Surface morphological changes of pathogenic Acanthamoeba spp treated with mahanimbine. J Agrobiotech 2:81–83

    Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49

    Article  CAS  Google Scholar 

  • Gordeeva AV, Labas YA, Zvyagilskaya RA (2004) Apoptosis in unicellular organism: mechanisms and evolution. Biochem (Moscow) 69(10):1055–1066

    Article  CAS  Google Scholar 

  • Habsah M, Zalilawati MR, Shaari K, Latip J, Kikuzaki H, Lajis NH, Ali AM (2009) Antibacterial and DPPH free radical-scavenging compound from methanolic extracts of Aaptos sp. (Marine sponges). Pertanika. J Trop Agric Sci 32(1):45–52

    Google Scholar 

  • Illingworth CD, Cook SD (1998) Acanthamoeba keratitis. Surv Ophthalmol 42:493–508

    Article  CAS  Google Scholar 

  • Kaczanowski S, Sajid M, Reece SE (2011) Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors 4:44–51

    Article  Google Scholar 

  • Lah B, Malovrh S, Narat M, Cepeljnik T, Marinsek-Logar R (2004) Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. Environ Toxicol 19:543–553

    Article  Google Scholar 

  • Larghi EL, Bohn ML, Kaufman TS (2009) Aaptamine and related products. Their isolation, chemical syntheses, and biological activity. Tetrahedron 65:4257–4282

    Article  CAS  Google Scholar 

  • Laurent D, Pietra F (2006) Antiplasmodial marine natural products in the perspective of current chemotherapy and prevention of malaria: a review. Mar Biotechnol 8:433–447

    Article  CAS  Google Scholar 

  • Le Pape P, Zidane M, Abdala H, More M (2000) A glycoprotein isolated from the sponge, Pachymatisma johnstonii, has antileishmanial activity. Cell Biol Int 24:51–56

    Article  CAS  Google Scholar 

  • Lindquist TD, Sher NA, Doughman DJ (1988) Clinical signs and medical theraphy of early Acanthamoeba keratitis. Arc Ophthalmol 106:73–77

    Article  CAS  Google Scholar 

  • Marchan E, Arrieche D, Henriquez W, Crescente O (2000) In vitro effect of an alkaloid isolated from Amphimedon viridis (Porifea) on promastigotes of Leishmania mexicana. Rev Biol Trop 48(Suppl):31–38

    Google Scholar 

  • Marciano-Cabral F, Cabral Guy (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    Article  Google Scholar 

  • Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 7:583–598

    Article  CAS  Google Scholar 

  • Mascotti K, McCullough J, Burger S (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Blood Compon 40:693–696

    CAS  Google Scholar 

  • Nakao Y, Shiroiwa T, Murayama S, Matsunaga S, Goto Y, Matsumoto Y, Fusetani N (2004) Identification of renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar Drugs 2:55–62

    Article  CAS  Google Scholar 

  • Nakisah MA, Fatimah H, Ali AM (2008) Observation on the cytotoxicity of a plant compound labeled as MK2 on morphology of Acanthamoeba by scanning electron microscopy. Ann Microsc 8:72–75

    Google Scholar 

  • Narendra PS (2000) Rapid communication: a simple method for accurate estimation of apoptotic cells. Exp Cell Res 256:328–337

    Article  Google Scholar 

  • Olive PL, Frazer G, Banath JP (1993) Radiation-induced apoptosis measured in TK6 human lymphoblast cells using the comet assay. Radiat Res 136:130–136

    Article  CAS  Google Scholar 

  • Prokosch P, Edrada RA, Ebel R (2002) Drugs from the seas current status and microbiological implications. Appl Microb Biotechnol 59:125–134

    Article  Google Scholar 

  • Rangel HR, Dagger F (1997) Antiproliferative effect of illimaquinone on Leishmania mexicana. Cell Biol Int 21:337–339

    Article  CAS  Google Scholar 

  • Rao KV, Kasanah N, Wahyuono S, Tekwani BL, Schinazi RF, Hamann MT (2004) Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67:1314–1318

    Article  CAS  Google Scholar 

  • Rowland IR, Bearne CA, Fischer R, Pool-Zobel BL (1996) The effect of lactulose on DNA damage induced by DMH in the colon of human flora-associated rats. Nutr Cancer 26:37–47

    Article  CAS  Google Scholar 

  • Saraste A (1999) Morphologic criteria and detection of apoptosis. Herz 24(3):189–195

    Article  CAS  Google Scholar 

  • Schuster FL, Visvesvara GS (2004) Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist Updates 7:41–51

    Article  CAS  Google Scholar 

  • Shaari K, Ling K, Mat Rashid Z, Jean T, Abas F, Raof S, Zainal Z, Lajis N, Mohamad H, Ali AM (2009) Cytotoxic aaptamines from Malaysian Aaptos aaptos. Mar Drugs 7:1–8

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantization of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Szenasi Z, Endo T, Yagita K, Nagy E (1998) Isolation, identification and increasing importance of free-living amoebae causing human disease. J Med Microb 47:5–16

    Article  CAS  Google Scholar 

  • Tepe B, Degerli S, Arslan S, Malatyali E, Sarikurkcu C (2011) Determination of chemical profile, antioxidant, DNA damage protection and antiamoebic activities of Teucrium polium and Stachys iberis. Fitoterapia 82(2):237–246

    Article  CAS  Google Scholar 

  • Wright CW, O’Neil M, Philipson J, Warhust D (1988) Use of microdilution to assess in vitro antiamoebic activities of Brucea javanica fruits, Simarouba amara stem and a number of quasinoids. Antimicrob Agents Chemother 32(11):1725–1729

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Ministry of Science Technology and Innovation, Malaysia under Experimental Applied Research 01-02-12-0068-EA-10707 and Fundamental Research Grant Scheme (vote 59004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Habsah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakisah, M.A., Ida Muryany, M.Y., Fatimah, H. et al. Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii . World J Microbiol Biotechnol 28, 1237–1244 (2012). https://doi.org/10.1007/s11274-011-0927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0927-8

Keywords

Navigation