Skip to main content

Advertisement

Log in

Hydrogen production by Chlamydomonas reinhardtii revisited: Rubisco as a biotechnological target

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogen production by C. reinhardtii seems a promising alternative as a source of non-polluting biofuel. Hydrogen is generated as a result of combining free protons and electrons (supplied by ferredoxin) through the activity of an oxygen-sensitive hydrogenase. Thus, substantial hydrogen production is only observed in the light under anaerobic conditions. These require a reduced rate of photosynthetic oxygen evolution which is usually achieved by impairing photosystem II through sulphur starvation. Several approaches have been conducted to enhance and extend hydrogen production by addressing problems such as the mechanism of hydrogenase inhibition by oxygen, the stressing impact on the cells of the culture conditions, the use of starch as an alternate source of electrons under reduced photosynthetic activity, and the need of maintaining a balance between oxygen evolution and consumption. The photosynthetic enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) appears as suitable objective for biotechnological optimization of hydrogen production because of its relevance controlling the hydrogenase main competitor electron sink (the Calvin-Benson cycle), as well as starch accumulation and photorespiratory oxygen consumption. Possible strategies for increasing hydrogen generation based on alteration of Rubisco properties and/or catabolism through site-directed mutagenesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boyd ES, Spear JR, Peters JW (2009) [FeFe] hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community. Appl Environ Microbiol 75:4620–4623

    Article  CAS  Google Scholar 

  • Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296

    Article  CAS  Google Scholar 

  • Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640

    Article  CAS  Google Scholar 

  • Esquivel MG, Pinto TS, Marin-Navarro J, Moreno J (2006) Substitution of tyrosine residues at the aromatic cluster around the betaA-betaB loop of rubisco small subunit affects the structural stability of the enzyme and the in vivo degradation under stress conditions. Biochemistry 45:5745–5753

    Article  CAS  Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system. Appl Biochem Biotechnol 121:403–412

    Article  Google Scholar 

  • Ferreira RB, Esquivel MG, Teixeira AR (1992) Catabolism of ribulose bisphosphate carboxylase from higher plants. Curr Topics Phytochem 3:129–165

    Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758

    Article  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205

    Article  CAS  Google Scholar 

  • Frenkel AW (1952) Hydrogen evolution by the flagellate green alga, Chlamydomonas moewusii. Arch Biochem Biophys 38:219–230

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Genkov T, Spreitzer RJ (2009) Highly conserved small subunit residues influence rubisco large subunit catalysis. J Biol Chem 284:30105–30112

    Article  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative Metabolism of Chlamydomonas reinhardtii: I. Analysis of Fermentative Products from Starch in Dark and Light. Plant Physiol 75:212–218

    CAS  Google Scholar 

  • Ghirardi ML (2006) Hydrogen production by photosynthetic green algae. J Biochem Biotech 43:201–210

    CAS  Google Scholar 

  • Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M (2005) Approaches to developing biological H(2)-photoproducing organisms and processes. Biochem Soc Trans 33:70–72

    Article  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Article  CAS  Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407

    Article  CAS  Google Scholar 

  • Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551

    Article  CAS  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  Google Scholar 

  • Laurinavichene T, Fedorov A, Ghirardi ML, Seibert M, Tsygankov A (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrogen Energy 31:659–667

    Article  CAS  Google Scholar 

  • Makarova VV, Kosourov S, Krendeleva TE, Semin BK, Kukarskikh GP, Rubin AB, Sayre RT, Ghirardi ML, Seibert M (2007) Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity. Photosynth Res 94:79–89

    Article  CAS  Google Scholar 

  • Marin-Navarro J, Moreno J (2006) Cysteines 449 and 459 modulate the reduction-oxidation conformational changes of ribulose 1.5-bisphosphate carboxylase/oxygenase and the translocation of the enzyme to membranes during stress. Plant Cell Environ 29:898–908

    Article  CAS  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  CAS  Google Scholar 

  • Maul JE, Lilly JW, Cui L, de Pamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    Article  CAS  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  Google Scholar 

  • Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  Google Scholar 

  • Moreno J, Spreitzer RJ (1999) C172S substitution in the chloroplast-encoded large subunit affects stability and stress-induced turnover of ribulose-1, 5-bisphosphate carboxylase/oxygenase. J Biol Chem 274:26789–26793

    Article  CAS  Google Scholar 

  • Moreno J, Garcia-Murria MJ, Marin-Navarro J (2008) Redox modulation of Rubisco conformation and activity through its cysteine residues. J Exp Bot 59:1605–1614

    Article  CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    Article  CAS  Google Scholar 

  • Ogren WL (2003) Affixing the O to Rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76:53–63

    Article  CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  CAS  Google Scholar 

  • Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16:2151–2163

    Article  CAS  Google Scholar 

  • Posewitz MC, Dubini A, Meuser JE, Seibert M, Ghirardi ML (2008) Hydrogenases, hydrogen production, and anoxia. In: Stern D (ed) The Chlamydomonas sourcebook, vol. 2. Academic Press, Oxford, pp 217–255

    Google Scholar 

  • Redding KE, Cole DG (2008) Chlamydomonas: a sexually active, light-harvesting, carbon-reducing, hydrogen-belching ‘planimal’. EMBO reports 9:1182–1187

    Article  CAS  Google Scholar 

  • Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230

    Article  CAS  Google Scholar 

  • Ruhle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8:107

    Article  Google Scholar 

  • Rupprecht J (2009) From systems biology to fuel–Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142:10–20

    Article  CAS  Google Scholar 

  • Silakov A, Kamp C, Reijerse E, Happe T, Lubitz W (2009) Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. Biochemistry 48:7780–7786

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Esquivel MG, Du YC, McLaughlin PD (2001) Alanine-scanning mutagenesis of the small-subunit beta A-beta B loop of chloroplast ribulose-1, 5-bisphosphate carboxylase/oxygenase: substitution at Arg-71 affects thermal stability and CO2/O2 specificity. Biochemistry 40:5615–5621

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009a) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci USA 106:17331–17336

    Article  CAS  Google Scholar 

  • Stripp ST, Sanganas O, Happe T, Haumann M (2009b) The structure of the active site H-cluster of [Fe-Fe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Biochemistry 48:5042–5049

    Article  CAS  Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104:17548–17553

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2005) Interruption of the Calvin cycle inhibits the repair of Photosystem II from photodamage. Biochim Biophys Acta 1708:352–361

    Article  CAS  Google Scholar 

  • Vahrenholz C, Riemen G, Pratje E, Dujon B, Michaelis G (1993) Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr Gen 24:241–247

    Article  CAS  Google Scholar 

  • White AL, Melis A (2006) Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild-type and a Rubisco-less mutant. Int J Hydrogen Energy 31:455–464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors laboratories are supported by grants BIO2007-67708-C04-02 from MEC (Spain), BFU2009-11965 from MICINN (Spain) and PTDC/EBB-EBI/102728/2008 (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Marín-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín-Navarro, J., Esquivel, M.G. & Moreno, J. Hydrogen production by Chlamydomonas reinhardtii revisited: Rubisco as a biotechnological target. World J Microbiol Biotechnol 26, 1785–1793 (2010). https://doi.org/10.1007/s11274-010-0359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0359-x

Keywords

Navigation