Skip to main content
Log in

Enhanced Bioremediation of Heavy Metal Contaminated Landfill Soil Using Filamentous Fungi Consortia: a Demonstration of Bioaugmentation Potential

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to determine the mycoremediative capacity of filamentous fungi consortia in landfill heavy metal contaminated soil. Streak plate method was utilized for the isolation of fungi from the landfill soil. Isolates were identified using morphological and molecular techniques. Heavy metal tolerance of the fungi was determined using radial growth diameter technique. Twelve species of landfill indigenous fungi were used for the bioremediation process. Two categories of fungi consortia namely highly tolerant fungi (Perenniporia subtephropora, Daldinia starbaeckii, Phanerochaete concrescens, Cerrena aurantiopora, Fusarium equiseti, Polyporales sp., Aspergillus niger, Aspergillus fumigatus, and Trametes versicolor) and moderately tolerant fungi (Paecilomyces lilacinus, Antrodia serialis, and Penicillium cataractum) were used to amend the contaminated soil; meanwhile, the unamended soil served as control. Maximum tolerance index of 1.0 was reported in Cr-, Cu-, and Fe-amended PDA medium. Meanwhile, the maximum heavy metal bioremoval efficiencies were for highly tolerant fungal consortium treated soil and were recorded as As (62%) > Mn (59%) > Cu (49%) > Cr (42%) > Fe (38%). Likewise, the maximum metal removal rate constant (K) and the half-lives (t1/2) were 0.0097/day 71 days, 0.0088/day 79 days, 0.0067/day 103 days, 0.0054/day 128 days, and 0.0048/day 144 days for As, Mn, Cu, Cr, and Fe, respectively, which were all for soil treated with consortium of highly tolerant fungi (P. subtephropora, D. starbaeckii, P. concrescens, C. aurantiopora, F. equiseti, Polyporales sp., A. niger, A. fumigatus, and T. versicolor). Spectra analysis revealed a clear distinction in the functional groups between the fungal treated and the untreated soils. Peaks at 874 ± 2 cm−1 and 1425 ± 2 cm−1 were only found in fungi amended soil. Physicochemical parameters mainly pH and redox potential played a key role in the bioremediation process, and bioaccumulation was believed to be the favored mechanism for the metal bioremoval. The data are suitable for assessing the contribution of bioaugmentation with consortia of fungi. It is equally important for assessing the synergistic effect of fungi on the reduction of extractable heavy metals in contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel-Azeem, A., El-Morsy, E., Nour El-Dein, M., & Rashad, H. (2015). Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere, 6, 228–240.

    Google Scholar 

  • Abdi, O., & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6, 1386–1399.

    Google Scholar 

  • Achal, V., Kumari, D., & Pan, X. (2011). Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium. Research Journal of Microbiology, 6, 1–7.

    Google Scholar 

  • Adesodun, J., & Mbagwu, J. (2008). Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresource Technology, 99, 5659–5665.

    CAS  Google Scholar 

  • Ahemad, M. (2015). Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review. 3 Biotech, 5, 111–121.

    Google Scholar 

  • Ahemad, M., & Kibret, M. (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochemistry and Molecular Biology, 1, 19–26.

    Google Scholar 

  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26, 1–20.

    Google Scholar 

  • Akgul, A., & Akgul, A. (2018). Mycoremediation of copper: Exploring the metal tolerance of Brown rot fungi. BioResources, 13, 7155–7171.

    Google Scholar 

  • Akhtar, S., Mahmood-ul-Hassan, M., Ahmad, R., Suthor, V., & Yasin, M. (2013). Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environment, 32, 55–62.

    CAS  Google Scholar 

  • Alam, A., Tabinda, A. B., Qadir, A., Butt, T. E., Siddique, S., & Mahmood, A. (2017). Ecological risk assessment of an open dumping site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research, 24, 17889–17899.

    CAS  Google Scholar 

  • Ali, J., Tuzen, M., Hazer, B., & Kazi, T. G. (2019). Chromium speciation in water samples by loading a new sulfide-containing biodegradable polymer adsorbent in tip of the syringe system. Water, Air, & Soil Pollution, 230, 45. https://doi.org/10.1007/s11270-019-4092-2.

    Article  CAS  Google Scholar 

  • Balaji, V., Arulazhagan, P., & Ebenezer, P. (2014). Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. Journal of Environmental Biology, 35, 521–529.

    CAS  Google Scholar 

  • Benaisa, S., Arhoun, B., Villen-Guzman, M., El Mail, R., & Rodriguez-Maroto, J. M. (2019). Immobilization of brown seaweeds Sargassum vulgare for Fe 3+ removal in batch and fixed-bed column. Water, Air, & Soil Pollution, 230, 19. https://doi.org/10.1007/s11270-018-4069-6.

    Article  CAS  Google Scholar 

  • Bhat, M. M., Shankar, S., Shikha, Y. M., & Shukla, R. (2011). Remediation of hydrocarbon contaminated soil through microbial degradation-FTIR based prediction. Advances in Applied Science Research, 2, 321–326.

    CAS  Google Scholar 

  • Boonchan, S., Margaret, L. B., & S., G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology, 66, 1007–1019.

  • Butler, J. L., Williams, M. A., Bottomley, P. J., & Myrold, D. D. (2003). Microbial community dynamics associated with rhizosphere carbon flow. Applied and Environmental Microbiology, 69, 6793–6800.

    CAS  Google Scholar 

  • Cánovas, D., & De Lorenzo, V. (2007). Osmotic stress limits arsenic hypertolerance in Aspergillus sp. P37. FEMS Microbiology Ecology, 61, 258–263.

    Google Scholar 

  • Chakraborty, R., Wu, C. H., & Hazen, T. C. (2012). Systems biology approach to bioremediation. Current Opinion in Biotechnology, 23, 483–490.

    CAS  Google Scholar 

  • Chuan, M., Shu, G., & Liu, J. (1996). Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water, Air, & Soil Pollution, 90, 543–556.

    CAS  Google Scholar 

  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry, 12, 10815–10837.

    Google Scholar 

  • Damodaran, D., Balakrishnan, R. M., & Shetty, V. K. (2013). The uptake mechanism of Cd (II), Cr (VI), Cu (II), Pb (II), and Zn (II) by mycelia and fruiting bodies of Galerina vittiformis. Biomedical Research International, 2013, 1–12.

    Google Scholar 

  • Datta, B. (2015). Heavy metal tolerance of filamentous fungi isolated from metal-contaminated soil. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 17, 965–968.

    Google Scholar 

  • de Freitas, F., Battirola, L. D., & de Andrade, R. L. T. (2018). Adsorption of Cu 2+ and Pb 2+ ions by Pontederia rotundifolia (Lf)(Pontederiaceae) and Salvinia biloba Raddi (Salviniaceae) biomass. Water, Air, & Soil Pollution, 229, 349. https://doi.org/10.1007/s11270-018-4005-9.

    Article  CAS  Google Scholar 

  • de Godoy Leme, M. A., & Miguel, M. G. (2018). Permeability and retention to water and leachate of a compacted soil used as liner. Water, Air, & Soil Pollution, 229, 374. https://doi.org/10.1007/s11270-018-4001-0.

    Article  CAS  Google Scholar 

  • Dhankhar, R., & Hooda, A. (2011). Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32, 467–491.

    CAS  Google Scholar 

  • Emenike, C. U., Agamuthu, P., & Fauziah, S. H. (2016). Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environmental Earth Sciences, 75, 1–8.

    CAS  Google Scholar 

  • Emenike, C. U., Agamuthu, P., & Fauziah, S. H. (2017). Sustainable remediation of heavy metal polluted soil: A biotechnical interaction with selected bacteria species. Journal of Geochemical Exploration, 182, 275–278.

    CAS  Google Scholar 

  • EPA. (2000). A guide to the sampling and analysis of waters, wastewaters, soils and wastes (7th edn., pp. 1–54): Melbourne.

  • Fauziah, S. H., Izzati, M. N., & Agamuthu, P. (2013). Toxicity on Anabas Testudineus: A case study of sanitary landfill leachate. Procedia Environmental Sciences, 18, 14–19.

    CAS  Google Scholar 

  • Fawzy, E. M., Abdel-Motaal, F. F., & El-zayat, S. A. (2017). Biosorption of heavy metals onto different eco-friendly substrates. Journal of Toxicology and Environmental Health Sciences, 9, 35–44.

    CAS  Google Scholar 

  • Fazli, M. M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13, 1–9.

    CAS  Google Scholar 

  • Fukuda, T., Ishino, Y., Ogawa, A., Tsutsumi, K., & Morita, H. (2008). Cr (VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. The Journal of General and Applied Microbiology, 54, 295–303.

    CAS  Google Scholar 

  • Gola, D., Dey, P., Bhattacharya, A., Mishra, A., Malik, A., Namburath, M., & Ahammad, S. Z. (2016). Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresource Technology, 218, 388–396.

    CAS  Google Scholar 

  • Goswami, U., & Sarma, H. (2008). Study of the impact of municipal solid waste dumping on soil quality in Guwahati city. Pollution Research, 27, 327–330.

    CAS  Google Scholar 

  • Hanif, M. A., Nadeem, R., Rashid, U., & Zafar, M. N. (2005). Assessing pollution levels in effluents of industries in city zone of Faisalabad, Pakistan. Journal of Applied Sciences, 5, 1713–1717.

    CAS  Google Scholar 

  • Hansda, A., & Kumar, V. (2016). A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology, 32, 1–14.

    CAS  Google Scholar 

  • Hettick, B. E., Canas-Carrell, J. E., French, A. D., & Klein, D. M. (2015). Arsenic: A review of the Element's toxicity, plant interactions, and potential methods of remediation. Journal of Agricultural and Food Chemistry, 63, 7097–7107.

    CAS  Google Scholar 

  • Igiehon, N. O., & Babalola, O. O. (2019). Fungal bio-sorption potential of chromium in Norkrans liquid medium by shake flask technique. Journal of Basic Microbiology, 59, 62–73.

    CAS  Google Scholar 

  • Iram, S., & Abrar, S. (2015). Biosorption of copper and lead by heavy metal resistant fungal isolates. International Journal of Scientific and Research Publications, 5, 1–5.

    Google Scholar 

  • Ivanova, J., Toncheva-Panova, T., Chernev, G., & Samuneva, B. (2008). Effect of Ag+, Cu2+ and Zn2+ containing hybrid nanomatrixes on the green algae Chlorella keissleri. General and Applied Plant Physiology, 34, 339–346.

    CAS  Google Scholar 

  • Jackson, P., Robinson, K., Puxty, G., & Attalla, M. (2009). In situ Fourier transform-infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. Energy Procedia, 1, 985–994.

    CAS  Google Scholar 

  • Jayanthi, B., Emenike, C. U., Agamuthu, P., Simarani, K., Mohamad, S., & Fauziah, S. H. (2016). Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. Catena, 147, 25–31.

    CAS  Google Scholar 

  • Jayanthi, B., Emenike, C. U., Auta, S. H., Agamuthu, P., & Fauziah, S. H. (2017). Characterization of induced metal responses of bacteria isolates from active non-sanitary landfill in Malaysia. International Biodeterioration & Biodegradation, 119, 467–475.

    CAS  Google Scholar 

  • Jeyasingh, J., & Philip, L. (2005). Bioremediation of chromium contaminated soil: Optimization of operating parameters under laboratory conditions. Journal of Hazardous Materials, 118, 113–120.

    CAS  Google Scholar 

  • Khamesy, S., Hamidian, A., & Atghia, O. (2016). Identification of the fungi absorbing heavy metals isolated from waste deposits of zinc factories. Mycologia Iranica, 3, 65–73.

    Google Scholar 

  • Lebeau, T. (2011). Bioaugmentation for in situ soil remediation: How to ensure the success of such a process Bioaugmentation, biostimulation and biocontrol (pp. 129-186). Springer.

  • Madejón, P., Domínguez, M. T., Gil-Martínez, M., Navarro-Fernández, C. M., Montiel-Rozas, M., Madejón, E., Murillo, J., Cabrera, F., & Marañón, T. (2018). Evaluation of amendment addition and tree planting as measures to remediate contaminated soils: The Guadiamar case study (SW Spain). Catena, 166, 34–43.

    Google Scholar 

  • Mandal, S. K., & Das, N. (2018). Phyto-mycoremediation of benzo a pyrene in soil by combining the role of yeast consortium and sunflower plant. Journal of Environmental Biology, 39, 261–268.

    CAS  Google Scholar 

  • Mandal, A., Thakur, J., Sahu, A., Bhattacharjya, S., Manna, M., & Patra, A. K. (2016). Plant–microbe interaction for the removal of heavy metal from contaminated site. Plant-Microbe Interaction: An Approach to Sustainable Agriculture (pp. 227-247). Springer.

  • Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653.

    CAS  Google Scholar 

  • Mohammadian, E., Ahari, A. B., Arzanlou, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 185, 290–296.

    CAS  Google Scholar 

  • Muneer, B., Lali, T., Iqbal, M. J., Shakoori, F. R., & Shakoori, A. R. (2016). Arsenic processing of yeast isolates IIB-As1 & IIB-As2 and production of glutathione under stress conditions. Journal of Basic Microbiology, 56, 1124–1131.

    CAS  Google Scholar 

  • Munoz, A. J., Ruiz, E., Abriouel, H., Galvez, A., Ezzouhri, L., Lairini, K., & Espinola, F. (2012). Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chemical Engineering Journal, 210, 325–332.

    CAS  Google Scholar 

  • Nagajyoti, P., Lee, K., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    CAS  Google Scholar 

  • Namkoong, W., Hwang, E. Y., Park, J. S., & Choi, J. Y. (2002). Bioremediation of diesel-contaminated soil with composting. Environmental Pollution, 119, 23–31.

    CAS  Google Scholar 

  • Oladipo, O. G., Awotoye, O. O., Olayinka, A., Ezeokoli, O. T., Maboeta, M. S., & Bezuidenhout, C. C. (2016). Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Bioremediation Journal, 20, 1–11.

    Google Scholar 

  • Oladipo, O. G., Auiotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49, 29–37.

    CAS  Google Scholar 

  • Pariatamby, A., Cheah, W. Y., Shrizal, R., Thamlarson, N., Lim, B. T., & Barasarathi, J. (2015). Enhancement of landfill methane oxidation using different types of organic wastes. Environmental Earth Sciences, 73, 2489–2496.

    CAS  Google Scholar 

  • Popenda, A. (2014). Effect of redox potential on heavy metals and As behavior in dredged sediments. Desalination and Water Treatment, 52, 3918–3927.

    CAS  Google Scholar 

  • Rocco, C., Agrelli, D., Coppola, I., Gonzalez, I., & Adamo, P. (2018). Native plant colonization of brownfield soil and sludges: Effects on substrate properties and pollutant mobility. Journal of Soils and Sediments, 18, 2282–2291. https://doi.org/10.1007/s11368-017-1850-x.

    Article  CAS  Google Scholar 

  • Schalk, I. J., Hannauer, M., & Braud, A. (2011). New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology, 13, 2844–2854.

    CAS  Google Scholar 

  • Sharma, M. R., & Raju, N. (2013). Correlation of heavy metal contamination with soil properties of industrial areas of Mysore, Karnataka, India by cluster analysis. International Research Journal of Environment Sciences, 2, 22–27.

    Google Scholar 

  • Singh, A., Parmar, N., Kuhad, R. C., & Ward, O. P. (2011). Bioaugmentation, biostimulation, and biocontrol in soil biology Bioaugmentation, Biostimulation and Biocontrol (Vol. 28, pp. 1-23). Springer.

  • Singh, M., Srivastava, P., Verma, P., Kharwar, R., Singh, N., & Tripathi, R. (2015). Soil fungi for mycoremediation of arsenic pollution in agriculture soils. Journal of Applied Microbiology, 119, 1278–1290.

    CAS  Google Scholar 

  • Sprocati, A. R., Alisi, C., Segre, L., Tasso, F., Galletti, M., & Cremisini, C. (2006). Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Science of the Total Environment, 366, 649–658.

    CAS  Google Scholar 

  • Sprocati, A. R., Alisi, C., Tasso, F., Marconi, P., Sciullo, A., Pinto, V., Chiavarini, S., Ubaldi, C., & Cremisini, C. (2012). Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochemistry, 47, 1649–1655.

    CAS  Google Scholar 

  • Srivastava, P. K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N., & Tripathi, R. D. (2011). Biological removal of arsenic pollution by soil fungi. Science of the Total Environment, 409, 2430–2442.

    CAS  Google Scholar 

  • Su, S., Zeng, X., Bai, L., Li, L., & Duan, R. (2011). Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Science of the Total Environment, 409, 5057–5062.

    CAS  Google Scholar 

  • Su, S., Zeng, X., Li, L., Duan, R., Bai, L., Li, A., Wang, J., & Jiang, S. (2012). Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. Journal of Hazardous Materials, 243, 364–367.

    CAS  Google Scholar 

  • Tang, J. D., Parker, L. A., Perkins, A. D., Sonstegard, T. S., Schroeder, S. G., Nicholas, D. D., & Diehl, S. V. (2013). Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa. Applied and Environmental Microbiology, 79, 1523–1533.

    CAS  Google Scholar 

  • Toal, M., Yeomans, C., Killham, K., & Meharg, A. (2000). A review of rhizosphere carbon flow modelling. Plant and Soil, 222, 263–281.

    CAS  Google Scholar 

  • Ullah, R., Hadi, F., Ahmad, S., Jan, A. U., & Rongliang, Q. (2019). Phytoremediation of lead and chromium contaminated soil improves with the endogenous phenolics and proline production in Parthenium, Cannabis, Euphorbia, and Rumex species. Water, Air, & Soil Pollution, 230, 40. https://doi.org/10.1007/s11270-019-4089-x.

    Article  CAS  Google Scholar 

  • USEPA. (1996). Method 3050B. Acid digestion of sediments, sludges, and soils (pp. 1-12). US-EPA Washington, DC.

  • Viti, C., Marchi, E., Decorosi, F., & Giovannetti, L. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiology Reviews, 38, 633–659.

    CAS  Google Scholar 

  • Wang, J., & Chen, C. (2014). Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160, 129–141.

    CAS  Google Scholar 

  • Wang, S., & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management, 90, 2367–2376.

    CAS  Google Scholar 

  • Wang, M. X., Zhang, Q. L., & Yao, S.-J. (2015). A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chemical Engineering Journal, 259, 837–844.

    CAS  Google Scholar 

  • Xu, X., Huang, X., Liu, D., Lin, J., Ye, X., & Yang, J. (2018). Inhibition of metal ions on Cerrena sp. laccase: Kinetic, decolorization and fluorescence studies. Journal of the Taiwan Institute of Chemical Engineers, 84, 1–10.

    Google Scholar 

  • Yin, G., Zhang, Y., Pennerman, K., Wu, G., Hua, S., Yu, J., Jurick, W., Guo, A., & Bennett, J. (2017). Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. Journal of Fungi, 3, 1–10.

    Google Scholar 

Download references

Funding

This work was funded by the University of Malaya with the research grants RP011A-14SUS and PG070-2014B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fauziah Shahul Hamid.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A., Pariatamby, A., Ahmed, A. et al. Enhanced Bioremediation of Heavy Metal Contaminated Landfill Soil Using Filamentous Fungi Consortia: a Demonstration of Bioaugmentation Potential. Water Air Soil Pollut 230, 215 (2019). https://doi.org/10.1007/s11270-019-4227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4227-5

Keywords

Navigation