Skip to main content
Log in

Influence of Delipidation on Hg Analyses in Biological Tissues: A Case Study for an Antarctic Ecosystem

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The use of low-polarity organic solvents is widespread in cleanup/extraction processes in order to carry compounds of interest, remove interferences and separate phases, among other uses. A large number of studies have used delipidation to remove excess of lipids to analyse carbon stable isotopes in biological tissues for trophic and behavioural ecology investigations. In this context, the primary aim of this study is to assess the influence of one delipidation process on the results of total mercury (Hg) analyses and the possible use of delipidated samples from previous analyses, such as for stable isotopes, in Hg level determination. Samples of vegetation (angiosperm, lichens and mosses), invertebrates (krill and limpets), fish (marbled and black rockcod), bird liver and eggs (Antarctic, Gentoo and Adélie penguins, kelp gull, Antarctic tern, cape petrel and giant southern petrel) and pinniped tissues (Weddell seal, crabeater seal, southern elephant seal and Antarctic fur seal) were analysed for Hg before and after delipidation by cyclohexane. The difference between the two measurements ranged individually from −63 to 136% (in the moss Sanionia uncinata) and the averages ranged from −60 to 66% (in pinniped tissues). The proportion of organic Hg, which presents considerable lipophilicity, but also high affinity for sulfhydryl groups in proteins, might be responsible for such variability. Given the limitations of our study, we think it is safe to say that delipidated samples could not be used to infer total Hg values in non-delipidated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amiard, J.-C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic toxicology (Amsterdam, Netherlands), 76(2), 160–202. doi:10.1016/j.aquatox.2005.08.015.

    Article  CAS  Google Scholar 

  • Bargagli, R., Monaci, F., Sanchez-Hernandez, J. C., & Cateni, D. (1998a). Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecology Progress Series, 169, 65–76. doi:10.3354/meps169065.

    Article  CAS  Google Scholar 

  • Bargagli, R., Sanchez-Hernandez, J., Martella, L., & Monaci, F. (1998b). Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biology, 19, 316–322. doi:10.1007/s003000050252 Accessed 29 Aug 2014.

    Article  Google Scholar 

  • Bienvenue, E., Boudou, A., Desmazes, J. P., Gavach, C., Georgescauld, D., Sandeaux, J., et al. (1984). Transport of mercury compounds across bimolecular lipid membranes: effect of lipid composition, pH and chloride concentration. Chemico-Biological Interactions, 48(1), 91–101. doi:10.1016/0009-2797(84)90009-7.

    Article  CAS  Google Scholar 

  • Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49(5), 1010–1017. doi:10.1139/f92-113.

    Article  CAS  Google Scholar 

  • Bond, A. L., & Diamond, A. W. (2009). Total and methyl mercury concentrations in seabird feathers and eggs. Archives of Environmental Contamination and Toxicology, 56(2), 286–291. doi:10.1007/s00244-008-9185-7.

    Article  CAS  Google Scholar 

  • Brasso, R., Lang, J., Jones, C., & Polito, M. (2014). Ontogenetic niche expansion influences mercury exposure in the Antarctic silverfish Pleuragramma antarcticum. Marine Ecology Progress Series, 504, 253–263. doi:10.3354/meps10738.

    Article  Google Scholar 

  • Braune, B. M. (2007). Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975–2003. Environmental pollution (Barking, Essex : 1987), 148(2), 599–613. doi:10.1016/j.envpol.2006.11.024.

    Article  CAS  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference (2nd ed.). Springer. http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-95364-9. Accessed 3 June 2013

  • Bustamante, P., Lahaye, V., Durnez, C., Churlaud, C., & Caurant, F. (2006). Total and organic Hg concentrations in cephalopods from the north eastern Atlantic waters: influence of geographical origin and feeding ecology. The Science of the Total Environment, 368(2–3), 585–596. doi:10.1016/j.scitotenv.2006.01.038.

    Article  CAS  Google Scholar 

  • Campbell, L. M., Norstrom, R. J., Hobson, K. a., Muir, D. C. G., Backus, S., & Fisk, A. T. (2005). Mercury and other trace elements in a pelagic Arctic marine food web (Northwater polynya, Baffin Bay). The Science of the Total Environment, 351–352, 247–263. doi:10.1016/j.scitotenv.2005.02.043.

    Article  Google Scholar 

  • Carravieri, A., Cherel, Y., Blévin, P., Brault-Favrou, M., Chastel, O., & Bustamante, P. (2014). Mercury exposure in a large subantarctic avian community. Environmental pollution (Barking, Essex: 1987), 190C, 51–57. doi:10.1016/j.envpol.2014.03.017.

    Article  Google Scholar 

  • Chouvelon, T., Spitz, J., Cherel, Y., Caurant, F., Sirmel, R., Mèndez-Fernandez, P., & Bustamante, P. (2011). Inter-specific and ontogenic differences in δ13C and δ15N values and Hg and Cd concentrations in cephalopods. Marine Ecology Progress Series, 433, 107–120. doi:10.3354/meps09159.

    Article  CAS  Google Scholar 

  • Cipro, C. V. Z., Taniguchi, S., & Montone, R. C. (2010). Occurrence of organochlorine compounds in Euphausia superba and unhatched eggs of Pygoscelis genus penguins from Admiralty Bay (King George Island, Antarctica) and estimation of biomagnification factors. Chemosphere, 78(6), 767–771. doi:10.1016/j.chemosphere.2009.10.006.

    Article  CAS  Google Scholar 

  • Cipro, C. V. Z., Yogui, G. T., Bustamante, P., Taniguchi, S., Sericano, J. L., & Montone, R. C. (2011). Organic pollutants and their correlation with stable isotopes in vegetation from King George Island, Antarctica. Chemosphere, 85(3), 393–398. doi:10.1016/j.chemosphere.2011.07.047.

    Article  CAS  Google Scholar 

  • Cipro, C. V. Z., Bustamante, P., Taniguchi, S., & Montone, R. C. (2012). Persistent organic pollutants and stable isotopes in pinnipeds from King George Island, Antarctica. Marine Pollution Bulletin, 64(12), 2650–2655. doi:10.1016/j.marpolbul.2012.10.012.

    Article  CAS  Google Scholar 

  • Cipro, C. V. Z., Colabuono, F. I., Taniguchi, S., & Montone, R. C. (2013). Persistent organic pollutants in bird, fish and invertebrate samples from King George Island, Antarctica. Antarctic Science, 25(4), 545–552. doi:10.1017/S0954102012001149.

    Article  Google Scholar 

  • Cipro, C. V. Z., Montone, R. C., & Bustamante, P. (2017). Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: occurrence and trophic distribution. Marine Pollution Bulletin, 114(1), 564–570. doi:10.1016/j.marpolbul.2016.09.024.

    Article  CAS  Google Scholar 

  • Corbisier, T. N., Petti, M. a. V., Skowronski, R. S. P., & Brito, T. A. S. (2004). Trophic relationships in the nearshore zone of Martel inlet (King George Island, Antarctica): d13C stable-isotope analysis. Polar Biology, 27(2), 75–82. doi:10.1007/s00300-003-0567-z.

    Article  Google Scholar 

  • DeNiro, M., & Epstein, S. (1977). Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197(4300), 261–263. doi:10.1126/science.327543.

    Article  CAS  Google Scholar 

  • DeNiro, M., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42(5), 495–506. doi:10.1016/0016-7037(78)90199-0.

    Article  CAS  Google Scholar 

  • Heimbürger, L.-E., Cossa, D., Marty, J.-C., Migon, C., Averty, B., Dufour, A., & Ras, J. (2010). Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochimica et Cosmochimica Acta, 74(19), 5549–5559. doi:10.1016/j.gca.2010.06.036.

    Article  Google Scholar 

  • Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2008). Marine mammals of the world: a comprehensive guide to their identification. In Marine mammals of the world: a comprehensive guide to their identification (First edit., pp. 306–444). London: Academic Press. http://books.google.com/books?hl=en&lr=&id=TwFUimDtz7sC&oi=fnd&pg=PP1&dq=Marine+mammals+of+the+world:+a+comprehensive+guide+to+their+identification&ots=B_hBRQBl1w&sig=SdxxqcjodLsBceRtSEzRl4SqbfA. Accessed 7 July 2011

  • Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19(2), 101–108. doi:10.1016/j.tree.2003.10.013.

    Article  Google Scholar 

  • Kannan Jr., K., Smith, R. G., Lee, R. F., Windom, H. L., Heitmuller, P. T., Macauley, J. M., & Summers, J. K. (1998). Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries. Archives of Environmental Contamination and Toxicology, 34(2), 109–118. doi:10.1007/s002449900294.

    Article  CAS  Google Scholar 

  • Kojadinovic, J., Richard, P., Corre, M. L., Richard, P., & Bustamante, P. (2008). Effects of lipid extraction on δ13C and δ15N values in seabird muscle, liver and feathers. Waterbirds, 31(2), 169–178. doi:10.1675/1524-4695(2008)31.

    Article  Google Scholar 

  • Krahn, M. M., Herman, D. P., Ylitalo, G. M., Sloan, C. a., Burrows, D. G., Hobbs, R. C., et al. (2004). Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. Journal of Cetacean Research and Managment, 6(2), 175–189.

    Google Scholar 

  • Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., Swarr, G. J., Munson, K. M., Ohnemus, D. C., Lam, P. J., Heimbürger, L., Rijkenberg, M. J. A., & Saito, M. A. (2014). A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 512(7512), 65–68. doi:10.1038/nature13563.

    Article  CAS  Google Scholar 

  • Lee, Y. I., Lim, H. S., & Yoon, H. I. (2009). Carbon and nitrogen isotope composition of vegetation on King George Island, maritime Antarctic. Polar Biology, 32(11), 1607–1615. doi:10.1007/s00300-009-0659-5.

    Article  Google Scholar 

  • Lesage, V., Hammill, M. O., & Kovacs, K. M. (2002). Diet-tissue fractionation of stable carbon and nitrogen isotopes in phocid seals. Marine Mammal Science, 18(1), 182–193. doi:10.1111/j.1748-7692.2002.tb01027.x.

    Article  Google Scholar 

  • Macleod, M., Brown, D., Friedman, A., Burrows, D., Maynes, O., Pearce, R., et al. (1986). Standard Analytical Procedures of the NOAA National Analytical Facility, 1985–1986. In N. N. T. M. N. F. US. Department of Commerce (Ed.), Extractable toxic organic components, second edition (second ed.).

  • McConnaughey, T., & McRoy, C. P. (1979). Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology, 53(3), 257–262. doi:10.1007/BF00952434.

    Article  CAS  Google Scholar 

  • Nigro, M., & Leonzio, C. (1996). Intracellular storage of mercury and selenium in different marine vertebrates. Marine Ecology Progress Series, 135(1977), 137–143 http://www.int-res.com/articles/meps/135/m135p137.pdf. Accessed 9 June 2013.

    Article  CAS  Google Scholar 

  • Picken, G. B. (1980). The distribution, growth, and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908). Journal of Experimental Marine Biology and Ecology, 42, 71–85 http://linkinghub.elsevier.com/retrieve/pii/0022098180901677. Accessed 10 June 2011.

    Article  Google Scholar 

  • Piechnik, C. A., Höckner, M., de Souza, M. R. D. P., Donatti, L., & Tomanek, L. (2016). Time course of lead induced proteomic changes in gill of the Antarctic limpet Nacella concinna (Gastropoda: Patellidae). Journal of Proteomics. doi:10.1016/j.jprot.2016.04.036.

    Google Scholar 

  • Post, D. M., Layman, C. a., Arrington, D. A., Takimoto, G., Quattrochi, J., & Montaña, C. G. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152(1), 179–189. doi:10.1007/s00442-006-0630-x.

    Article  Google Scholar 

  • Saouter, E., Hare, L., Campbell, P. G. C., Boudou, A., & Ribeyre, F. (1993). Mercury accumulation in the burrowing mayfly Hexagenia rigida (Ephemeroptera) exposed to CH3 HgCl or HgCl2 in water and sediment. Water Research, 27(6), 1041–1048. doi:10.1016/0043-1354(93)90068-S.

    Article  CAS  Google Scholar 

  • Scheuhammer, A., Perrault, J., & Bond, D. (2001). Mercury, methylmercury, and selenium concentrations in eggs of common loons (Gavia immer) from Canada. Environmental Monitoring and Assessment, 72, 79–94. doi:10.1023/A:1011911805216.

    Article  CAS  Google Scholar 

  • Selin, N. E. (2009). Global biogeochemical cycling of mercury: a review. Annual Review of Environment and Resources, 34(1), 43–63. doi:10.1146/annurev.environ.051308.084314.

    Article  Google Scholar 

  • Sweeting, C. J., Polunin, N. V. C., & Jennings, S. (2006). Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid communications in mass spectrometry : RCM, 20(4), 595–601. doi:10.1002/rcm.2347.

    Article  CAS  Google Scholar 

  • Tarling, G., Hill, S., Peat, H., Fielding, S., Reiss, C., & Atkinson, A. (2016). Growth and shrinkage in Antarctic krill Euphausia superba is sex-dependent. Marine Ecology Progress Series, 547, 61–78. doi:10.3354/meps11634.

    Article  Google Scholar 

  • Wade, T. L., & Cantillo, A. Y. (1994). Use of standards and reference materials in the measurement of chlorinated hydrocarbon residues. Chemistry Workbook. NOAA Technical Memorandum NOS ORCA, 77, 59. http://www.jodc.go.jp/info/ioc_doc/Technical/103571e.pdf

Download references

Acknowledgements

The authors acknowledge CPER 13 (Contrat de Plan État-Région) for funding the AMA. C.V.Z.C. received scholarships from CAPES (Coordination for the Improvement of Higher Education Personnel via the Science without Borders programme, Brazil; grant no. 11490-13-6). C. Churlaud and M. Brault-Favrou of the ‘Plateforme Analyses Elémentaires’ of LIENSs are to be thanked for their assistance during Hg analyses and G. Guillou and B. Lebreton of the ‘Plateforme Analyses Isotopiques’ of LIENSs are also thanked for their assistance during SIA analyses. The present work is a result of the projects ‘Environmental management of Admiralty Bay, King George Island, Antarctica: persistent organic pollutants and sewage’ (CNPq No. 55.0348/2002-6), and ‘Modeling the bioaccumulation of organic pollutants throughout an Antarctic food web’ (CNPq 550018/2007-7) and also contributes to the Brazilian National Science and Technology Institute on Antarctic Environmental Research (INCT-APA). Financial support was obtained from the Brazilian Antarctic Program (PROANTAR), Ministry of the Environment (MMA) and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq). Antarctic logistics was provided by Secretaria da Comissão Interministerial para os Recursos do Mar (SECIRM). Finally, authors wish many thanks to everyone involved in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio V. Z. Cipro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipro, C.V.Z., Bustamante, P. & Montone, R.C. Influence of Delipidation on Hg Analyses in Biological Tissues: A Case Study for an Antarctic Ecosystem. Water Air Soil Pollut 228, 188 (2017). https://doi.org/10.1007/s11270-017-3367-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3367-8

Keywords

Navigation