Skip to main content
Log in

Carbon and nitrogen isotope composition of vegetation on King George Island, maritime Antarctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We report abundance of 13C and 15N contents in terrestrial plants (mosses, lichens, liverworts, algae and grasses) from the area of Barton Peninsula (King George Island, maritime Antarctic). The investigated plants show a wide range of δ13C and δ15N values between −29.0 and −20.0‰ and between −15.3 and 22.8‰, respectively. The King George Island terrestrial plants show species specificity of both carbon and nitrogen isotope compositions, probably due to differences in plant physiology and biochemistry, related to their sources and in part to water availability. Carbon isotope compositions of Antarctic terrestrial plants are typical of the C3 photosynthetic pathway. Lichens are characterized by the widest carbon isotope range, from −29.0 to −20.0‰. However, the average δ13C value of lichens is the highest (−23.6 ± 2.8‰) among King George Island plants, followed by grasses (−25.6 ± 1.7‰), mosses (−25.9 ± 1.6‰), liverworts (−26.3 ± 0.5‰) and algae (−26.3 ± 1.2‰), partly related to habitats controlled by water availability. The δ15N values of moss samples range widest (−9.0 to 22.8‰, with an average of 4.6 ± 6.6‰). Lichens are on the average most depleted in 15N (mean = −7.4 ± 6.4‰), whereas algae are most enriched in 15N (10.0 ± 3.3‰). The broad range of nitrogen isotope compositions suggest that the N source for these Antarctic terrestrial plants is spatially much variable, with the local presence of seabird colonies being particularly significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asada T, Warner BG, Aravena R (2005) Nitrogen isotope signature variability in plant species from open peatland. Aquat Bot 82:297–307. doi:10.1016/j.aquabot.2005.05.005

    Article  CAS  Google Scholar 

  • Atkin OK (1996) Reassessing the nitrogen relations of Arctic plants: a mini-review. Plant Cell Environ 19:695–704. doi:10.1111/j.1365-3040.1996.tb00404.x

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007) External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the maritime Antarctic region. Polar Biol 30:1315–1321. doi:10.1007/s00300-007-0292-0

    Article  Google Scholar 

  • Cocks MP, Balfour DA, Stock WD (1998) On the uptake of ornithogenic products by plants on the inland mountains of Dronning Maud Land, Antarctica, using stable isotopes. Polar Biol 20:107–111. doi:10.1007/s003000050283

    Article  Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climatic change. Plant Ecol 182:1–10

    Google Scholar 

  • Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 279:1510–1514. doi:10.1126/science.1071987

    Article  Google Scholar 

  • de Caritat P, Reimann C, Bogatyrev I, Chekushin V, Finne TE, Halleraker JH, Kashulina G, Niskavaara H, Pavlov V, Äyaräs M (2001) Regional distribution of Al, B, Ba, Ca, K., La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y in terrestrial moss within a 188,000 km2 area of the central Barents region: influence of geology, sea spray and human activity. Appl Geochem 16:137–159. doi:10.1016/S0883-2927(00)00026-3

    Google Scholar 

  • Ehleringer JR, Hall AE, Farquar GD (1993) Stable isotopes and plant carbon–water relationships. Academic Press

  • Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ (2001a) Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytol 151:503–511. doi:10.1046/j.1469-8137.2001.00178.x

    Article  CAS  Google Scholar 

  • Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ (2001b) Assimilation and isotopic fractionation of nitrogen by mycorrhizal and nonmycorrhizal subarctic plants. New Phytol 151:513–524. doi:10.1046/j.1469-8137.2001.00179.x

    Article  CAS  Google Scholar 

  • Erskine PD, Bergstrom DM, Schmidt S, Stewart GR, Tweedie CE, Shaw JD (1998) Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117:187–193. doi:10.1007/s004420050647

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration of leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Galimov EM (2000) Carbon isotope composition of Antarctic plants. Geochim Cosmochim Acta 64:1737–1739. doi:10.1016/S0016-7037(99)00328-2

    Article  CAS  Google Scholar 

  • Gillham ME (1961) Modification of sub-antarctic flora on Macquarie Island by sea birds and sea elephants. Proc R Soc Vic 74:1–12

    Google Scholar 

  • Greenfield LG (1992) Precipitation nitrogen at maritime Signy Island and continental Cape Bird, Antarctica. Polar Biol 11:649–653. doi:10.1007/BF00237961

    Article  Google Scholar 

  • Haines EB (1976) Stable carbon isotope ratios in biota, soils and tidal water of a Georgia salt marsh. Estuar Coast Mar Sci 4:609–616. doi:10.1016/0302-3524(76)90069-4

    Article  CAS  Google Scholar 

  • Högberg P (1997) Tansley review no. 95. 15N natural abundance in soil–plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Hovenden MJ, Seppelt RD (1995) Exposure and nutrients as delimiters of lichen communities in continental Antarctica. Lichenologist 27:505–516

    Google Scholar 

  • Huiskes AHL, Boschker HTS, Lud D, Moerdijk-Poortvliet TCW (2006) Stable isotope ratios as a tool for assessing changes in carbon and nutrient sources in Antarctic terrestrial ecosystems. Plant Ecol 182:79–86

    Google Scholar 

  • Jenkin JR (1975) Macquarie Island, Subantarctic. In: Rosswall T, Heal OW (eds) Structure and function of tundra ecosystems. Ecol Bull 20:375–397

  • Kim JH, Chung H (2004) Distribution pattern of Deschampsia antarctica, a flowering plant newly colonized around King Sejong Station in Antarctica. Ocean Polar Res 26:23–32

    Google Scholar 

  • Kim JH, Ahn I-Y, Lee KS, Chung H, Choi H-G (2007) Vegetation of Barton Peninsula in the neighborhood of King Sejong Station (King George Island, maritime Antarctic). Polar Biol 30:903–916. doi:10.1007/s00300-006-0250-2

    Article  Google Scholar 

  • Lee BY, Won Y, Oh SN (1997) Meteorological characteristics at King Sejong Station, Antarctica (1988–1996). Report BSPE 97604-00-1020-7. Korea Ocean Research and Development Institute, pp 571–599

  • Lee YI, Lim HS, Yoon HI (2004) Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: implications for pedogenesis in cold polar regions. Geochim Cosmochim Acta 68:4319–4333. doi:10.1016/j.gca.2004.01.020

    Article  CAS  Google Scholar 

  • Lindeboom HJ (1984) The nitrogen pathway in a penguin rookery. Ecology 65:269–277. doi:10.2307/1939479

    Article  CAS  Google Scholar 

  • Liu X-D, Li H-C, Sun L-G, Yin X-B, Zhao S-P, Wang YH (2006) δ13C and δ15N in the ornithogenic sediments from the Antarctic maritime as palaeoecological proxies during the past 2000 year. Earth Planet Sci Lett 243:424–438. doi:10.1016/j.epsl.2006.01.018

    Article  CAS  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi:10.1016/0009-2541(94)90059-0

    Article  CAS  Google Scholar 

  • Mizutani H, Wada E (1988) Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69:340–349. doi:10.2307/1940432

    Article  Google Scholar 

  • Mizutani H, Hasegawa H, Wada E (1986) High nitrogen isotope ratio for soils of seabird rookeries. Biogeochemistry 2:221–247. doi:10.1007/BF02180160

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener, RH (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publication, pp 23–44

  • Park J-H, Day TA, Strauss S, Ruhland CT (2007) Biogeochemical pools and fluxes of carbon and nitrogen in a maritime tundra near penguin colonies along the Antarctic Peninsula. Polar Biol 30:199–207. doi:10.1007/s00300-006-0173-y

    Article  Google Scholar 

  • Pearson J, Stewart GR (1993) The deposition of atmospheric ammonia and its effects on plants. New Phytol 125:283–305. doi:10.1111/j.1469-8137.1993.tb03882.x

    Article  CAS  Google Scholar 

  • Prahl FG, Bennett JT, Carpenter R (1980) The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochim Cosmochim Acta 44:1967–1976. doi:10.1016/0016-7037(80)90196-9

    Article  CAS  Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulphur, hydrogen and nitrogen. In: Scholf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, pp 149–186

  • Schulze ED (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244:776–782. doi:10.1126/science.244.4906.776

    Article  CAS  PubMed  Google Scholar 

  • Smith VR (1978) Animal–plant–soil nutrient relationships on Marion Island (Subantarctic). Oecologia 32:239–253. doi:10.1007/BF00366075

    Article  Google Scholar 

  • Smith RIL (1995) Colonization by lichens and the development of lichen-dominated communities in the maritime Antarctic. Lichenologist 27:473–483. doi:10.1016/S0024-2829(95)80007-7

    Article  Google Scholar 

  • Smykla J, Wolek J, Barcikowski A (2007) Zonation of vegetation related to penguin rookeries on King George Island, maritime Antarctic. Arct Antarct Alp Res 39:143–151. doi:10.1657/1523-0430(2007)39[143:ZOVRTP]2.0.CO;2

    Article  Google Scholar 

  • Tyson RV (1995) sedimentary organic matter: organic facies and palynofacies. Chapman and Hall

  • Unkovich M, Pate J, McNeill A, Gibbs DJ (eds) (2001) Stable Isotope techniques in the study of biological processes and functioning of ecosystems. Kluwer Academic Publishers, Dordrecht

  • Wada E, Shibata R, Torii T (1981) 15N abundance in Antarctica: origin of soil nitrogen and ecological implications. Nature 292:327–332. doi:10.1038/292327a0

    Article  CAS  Google Scholar 

  • Wainright SC, Haney JC, Kerr C, Golovkin AN, Flint MV (1998) Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St Paul, Pribilof Island, Bering Sea, Alaska. Mar Biol (Berl) 131:63–71. doi:10.1007/s002270050297

    Article  CAS  Google Scholar 

  • Weimerskirch H, Inchausti P, Guinet C, Barbraud C (2003) Trends in birds and seal populations as indicators of a system shift in the Southern Ocean. Antarct Sci 15:249–256. doi:10.1017/S0954102003001202

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Korea Polar Research Institute (PE09010) and by Ministry of Environment (the Eco-technopia 21 project: PN09020). We are grateful to Dr. J. H. Kim for her help in identification of Barton Peninsula plants. This manuscript has much benefited from helpful comments by an anonymous reviewer, Dr. Leopoldo Sancho and Editor-in-Chief Prof. Dieter Piepenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Il Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.I., Lim, H.S. & Yoon, H.I. Carbon and nitrogen isotope composition of vegetation on King George Island, maritime Antarctic. Polar Biol 32, 1607–1615 (2009). https://doi.org/10.1007/s00300-009-0659-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0659-5

Keywords

Navigation