Skip to main content
Log in

Stabilization of Cadmium- and Lead-Contaminated Sites Using Sodium Tetraethylenepentamine-Multi Dithiocarbamate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two soil amendments, KH2PO4 and sodium tetraethylenepentamine–multi dithiocarbamate (TEPA/CSSNa), were applied to heavy metal-contaminated sites, and their corresponding stabilization effects were compared. Three kinds of procedures, namely, sequential extraction procedure (SEP), toxicity characteristic leaching procedure (TCLP), and diethylenetriaminepentaacetic acid (DTPA) extraction procedure, were adopted to examine the potential of using TEPA/CSSNa to stabilize Cd and Pb in polluted sites. Simplified bioaccessibility extraction test (SBET) was used to investigate the bioaccessibility of Cd and Pb. TCLP and DTPA results showed that TEPA/CSSNa was more efficient than KH2PO4 in reducing the mobility of Cd and Pb. SBET results indicated that the bioaccessibility of Cd and Pb decreased with increasing dose of TEPA/CSSNa. The mobility rates of Cd and Pb decreased to 0.26 and 0 %, respectively, when using 3 % TEPA/CSSNa. The exchangeable and carbonate fractions of Cd and Pb were gradually converted into organic matter–sulfate compounds. After 1 year, natural aging tests revealed that organic matter–sulfate fractions of Cd and Pb increased and the labile fractions (exchangeable and carbonate fractions) decreased in the treated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbaspour, A., & Golchin, A. (2011). Immobilization of heavy metals in a contaminated soil in Iran using di-ammonium phosphate, vermicompost and zeolite. Environmental Earth Sciences, 63, 935–943.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. York New: Springer Verlag.

    Book  Google Scholar 

  • Agency USEP (2012). Section 261.24—toxicity characteristic.,27.

  • Ahmad, M., Hashimoto, Y., Moon, D. H., Lee, S. S., & Ok, Y. S. (2012a). Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. Journal of Hazardous Materials, 209, 392–401.

    Article  Google Scholar 

  • Ahmad, M., Moon, D. H., Lim, K. J., Shope, C. L., Lee, S. S., Usman, A. R., Kim, K.-R., Park, J.-H., Hur, S.-O., & Yang, J. E. (2012b). An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Sciences, 67, 1023–1031.

    Article  CAS  Google Scholar 

  • An, B., & Zhao, D. (2012). Immobilization of As (III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. Journal of Hazardous Materials, 211, 332–341.

    Article  Google Scholar 

  • Ascher, J., Ceccherini, M., Landi, L., Mench, M., Pietramellara, G., Nannipieri, P., & Renella, G. (2009). Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Applied Soil Ecology, 41, 351–359.

    Article  Google Scholar 

  • Aung, K. M. M., & Ting, Y.-P. (2005). Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology, 116, 159–170.

    Article  CAS  Google Scholar 

  • Bagherifam, S., Lakzian, A., Fotovat, A., Khorasani, R., & Komarneni, S. (2014). In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. Journal of Hazardous Materials, 273, 247–252.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology, 45, 4884–4889.

    Article  CAS  Google Scholar 

  • Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60, 365–371.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., & Baker, A. J. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.

    Article  CAS  Google Scholar 

  • Chang, Q., & Wang, G. (2007). Study on the macromolecular coagulant PEX which traps heavy metals. Chemical Engineering Science, 62, 4636–4643.

    Article  CAS  Google Scholar 

  • Chang, Y. T., Hsi, H. C., Hseu, Z. Y., & Jheng, S. L. (2013). Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. Journal of Environmental Science and Health, Part A, 48(13), 1748–1756.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., Singh, S. P., Cao, R. X., & Melamed, R. (2003). Field demonstration of in situ immobilization of soil Pb using P amendments. Advances in Environmental Research, 8, 93–102.

    Article  CAS  Google Scholar 

  • Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., & Zucca, A. (2003). Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Minerals Engineering, 16, 187–192.

    Article  CAS  Google Scholar 

  • Cotero-Villegas, A. M., García, P. G., Höpfl, H., del Carmen, P.-R. M., Martínez-Salas, P., López-Cardoso, M., & Olivares, R. C. (2011). Synthesis and spectroscopic characterization of eleven mixed-ligand diorganotellurium (IV) compounds containing dithiocarbamate and dithiophosphate ligands. Journal of Organometallic Chemistry, 696, 2071–2078.

    Article  CAS  Google Scholar 

  • Dash, S. K., & Hussain, M. (2011). Lime stabilization of soils: reappraisal. Journal of Materials in Civil Engineering, 24, 707–714.

    Article  Google Scholar 

  • Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3), 377–394.

    Article  Google Scholar 

  • Falciglia, P.P., & Vagliasindi, F.G. (2013). Stabilisation/solidification of Pb polluted soils: influence of contamination level and soil: binder ratio on the properties of cement-fly ash treated soils. Chemical Engineering, 32.

  • Fernández, M., Ariño, C., Díaz-Cruz, J. M., Tauler, R., & Esteban, M. (2001). Soft modelling approach applied to voltammetric data: study of electrochemically labile metal–glycine complexes. Journal of Electroanalytical Chemistry, 505, 44–53.

    Article  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.

    Article  CAS  Google Scholar 

  • Friesl, W., Horak, O., & Wenzel, W. W. (2004). Immobilization of heavy metals in soils by the application of bauxite residues: pot experiments under field conditions. Journal of Plant Nutrition and Soil Science, 167, 54–59.

    Article  CAS  Google Scholar 

  • Fu, F. L., Zeng, H. Y., Cai, Q. H., Qiu, R. L., Yu, J., & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbmate-type supramolecular heavy metal precipitant. Chemophere, 69, 1783–1789.

    Article  CAS  Google Scholar 

  • Galende, M., Becerril, J., Gómez-Sagasti, M., Barrutia, O., Epelde, L., Garbisu, C., & Hernández, A. (2014). Chemical stabilization of metal-contaminated mine soil: early short-term soil-amendment interactions and their effects on biological and chemical parameters. Water, Air, & Soil Pollution, 225, 1–13.

    Article  CAS  Google Scholar 

  • García-Miragaya, J., & Sosa, A. M. (1994). Trace elements in the Valencia lake (Venezuela) sediments. Water, Air, & Soil Pollution, 77(1–2), 141–150.

    Google Scholar 

  • Ghrair, A. M., Ingwersen, J., & Streck, T. (2010). Immobilization of heavy metals in soils amended by nanoparticulate zeolitic tuff: sorption‐desorption of cadmium. Journal of Plant Nutrition and Soil Science, 173, 852–860.

    Article  CAS  Google Scholar 

  • Gil-Díaz, M., Ortiz, L., Costa, G., Alonso, J., Rodríguez-Membibre, M., Sánchez-Fortún, S., Pérez-Sanz, A., Martín, M., & Lobo, M. (2014). Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates. Water, Air, & Soil Pollution, 225, 1–13.

    Article  Google Scholar 

  • Hashimoto, Y., Taki, T., & Sato, T. (2009). Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. Journal of Environmental Management, 90, 1782–1789.

    Article  CAS  Google Scholar 

  • Jianguo, J., & Wei, W. (1997). Study on the mechanism of polymer chelating agent capturing heavy metal lead.[J]. Chinese Journal of Enviromental Science, 2.

  • Klute, A. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods. American Society of Agronomy, Inc.

  • Lee, J., & Doolittle, J. (2002). Phosphate application impacts on cadmium sorption in acidic and calcareous soils. Soil Science, 167, 390–400.

    Article  CAS  Google Scholar 

  • Lee, S. H., Kim, E. Y., Park, H., Yun, J., & Kim, J. G. (2011). In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma, 161, 1–7.

    Article  Google Scholar 

  • Liu, L.H., Wu, J., Li, X., Ling, Y.L. (2011). Synthesis of sodium tetraethylenepentamine-multi dithiocarbamate and its removal performance for heavy metals. Research of Environmental Sciences, 3.

  • Liu, W., Wei, D., Mi, J., Shen, Y., Cui, B., & Han, C. (2015). Immobilization of Cu(II) and Zn(II) in simulated polluted soil using sulfurizing agent. Chemical Engineering Journal, 277, 312–317.

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China, 1996. Integrated Wastewater Discharge Standard (GB 8978–1996) (in Chinese).

  • Moon, D. H., Wazne, M., Cheong, K. H., Chang, Y. Y., Baek, K., Ok, Y. S., & Park, J. H. (2015). Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environmental Science and Pollution Research, 22(14), 11162–11169.

    Article  CAS  Google Scholar 

  • Oecd (1994). OECD Guidelines for the testing of chemicals. Organization for Economic.

  • Ok, Y. S., Kim, S. C., Kim, D. K., Skousen, J. G., Lee, J. S., Cheong, Y. W., Kim, S. J., & Yang, J. E. (2011). Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry and Health, 33, 23–30.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van de Wiele, T., Wragg, J., & Rompelberg, C. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Protection CsMoE (2008). Environmental quality standards for soils.

  • Puga, A., Abreu, C., Melo, L., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93.

    Article  CAS  Google Scholar 

  • Qiu, Q., Wu, J., Liang, G., Liu, J., Chu, G., Zhou, G., & Zhang, D. (2015). Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China. Environmental Monitoring and Assessment, 187, 1–13.

    Article  Google Scholar 

  • Sophia, A. C., & Swaminathan, K. (2005). Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste. Chemosphere, 58, 75–82.

    Article  CAS  Google Scholar 

  • Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316, 298–309.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tiwari, S., & Bajpai, A. (2005). Metal ion extraction by dithiocarbamate function supported on polyacrylamide. Reactive and Functional Polymers, 64, 47–54.

    Article  CAS  Google Scholar 

  • Xu, Y., & Zhang, F. (2005). Experimental study of wastewater treatment with heavy metal chelating agents. Journal of Hohai University: Natural Sciences, 33(2), 153–156.

    CAS  Google Scholar 

  • Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., & McGrath, S. P. (2014). Soil contamination in China: current status and mitigation strategies. Environmental Science & Technology, 49(2), 750–759.

    Article  Google Scholar 

  • Zhen, H. B., Xu, Q., Hu, Y. Y., & Cheng, J. H. (2012). Characteristics of heavy metals capturing agent dithiocarbamate (DTC) for treatment of ethylene diamine tetraacetic acid–Cu (EDTA–Cu) contaminated wastewater. Chemical Engineering Journal, 209, 547–557.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank the “State Key Laboratory of Pollution Control and Resource Reuse” and the “Key Laboratory of Yangtze River Water Environment, Ministry of Education.” This work was funded by “Stability properties and mechanism research of chelating-group-functionalized dendritic polymers on heavy metals in municipal solid waste incineration fly ash” program (21577100) and “Molecular mechanisms of genetical strain PSQ to regulate hyperaccumulation plant (Pteris vittata L.)” program (41271328), National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingru Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Zhao, H., Zhang, B. et al. Stabilization of Cadmium- and Lead-Contaminated Sites Using Sodium Tetraethylenepentamine-Multi Dithiocarbamate. Water Air Soil Pollut 228, 6 (2017). https://doi.org/10.1007/s11270-016-3114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3114-6

Keywords

Navigation