Skip to main content

Advertisement

Log in

Trace Element Groundwater Pollution Hazard in Regional Hydrogeological Systems (Empordà Basin, NE Spain)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Trace elements appear in natural waters as a result of rock weathering and human activities. Their occurrence is governed by a complex set of geochemical conditions which finally may induce trace element concentrations above health standards. In regional, large-scale aquifers, their presence is representative of the hydrogeological setting of the overall flow path from the recharge zone to the sampling well. In this study, we analyze hydrochemical, including major components and trace elements (Al, As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Sb, Sn, Sr, Pb, Zn), and stable isotopic data from exploitation wells in the Empordà basin (NE Spain). Our goal is to explore the hydrogeological meaning of trace elements as a means to contribute to the understanding of the regional flow dynamics as an initial step to face trace element pollution events. Groundwater data is hence described in the context of each aquifer relating the major hydrochemical facies with their accompanying trace elements. Results point out some expected geochemical relationships as well as some trace element associations that cannot be envisaged from the usual incomplete lithological information of the aquifer. Multivariate statistical analysis, as PCA, provides complementary information about geochemical processes (loadings) and regional occurrence (scores). Such statistical information can be taken as indicative of potential health hazard associated to trace element in groundwater. From a management perspective, such analysis points out which elements should a priori be considered for analysis according to the geological formation that holds the water supply well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA. (2005). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  • Ayotte, J. D., Gronberg, J. M., & Apocada, L. E. (2011a). Trace elements and radon in groundwater across the United States, 1992-2003: U.S. Geological Survey investigations report 2011-5059, 115 p.

  • Ayotte, J. D., Szabo, Z., Focazio, M. J., & Eberts, S. M. (2011a). Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells. Applied Geochemistry, 26, 747–762.

    Article  CAS  Google Scholar 

  • Bach, J. (1986). Sedimentación holocena en el litoral emergido de “l’Alt Empordà” (NE de Catalunya). Acta Geologica Hispánica, 21–22, 195–203.

    Google Scholar 

  • Bach, J., Mas-Pla, J., Menció, A., Brusi, D., Soler, D., Zamorano, M., Roqué, C., Boy-Roura, M., Folch, A., Moreno, V., & Font, L. (2014). Distribución de radon-222 en el Sistema acuífero del Empordà (NE España): aportaciones al modelo de recarga regional. II Congreso Ibérico de las Aguas Subterráneas. CIAS2014. Libro de actas, pp. 71-84.

  • Bruland, K.W., & Lohan, M. C. (2007). Controls of trace metals in seawater. In: H. D. Holland and K. K. Turekian (Eds.), Treatise on geochemistry (pp. 23-47). vol. 6.02.

  • Brusi, D., Ramonell, C., Menció, A., Roqué, C., & Mas-Pla, J. (2011). Isotopic characterization of ground water in western Pyrenees. 9th Int. Symposium on Applied Geochemistry. Tarragona. Abstracts book.

  • DeSimone, L. A., Hamilton, P. A., & Gilliom, R. J. (2009). Quality of water from domestic wells in principal aquifers of the United States, 1991-2004. Overview of Major Findings. U.S. Geological Survey. Circular 1332.

  • Edmunds, M., & Shand P. (2008). Natural groundwater quality. Blackwell Publishing Ltd. 464 p.

  • Edmunds W. M., Smedley P. (2005). Fluoride in natural waters. In: O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, P. Smedley (Eds.), Essentials of medical geology. Impacts of the Natural Environment on Public Health. Elsevier Academic Press.

  • Edmunds, W. M., Cook, J. M., Miles, D. L., & Trafford, J. M. (1988). Baseline trace element occurrence in the principal aquifers of the UK. Britisk Geological Survey Wallingford.

  • Folch, A., Menció, A., Puig, R., Soler, A., & Mas-Pla, J. (2011). Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: the Selva basin (NE Spain). Journal of Hydrology, 403, 83–102.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of ground water composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Resources, 34, 807–816.

    CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. U. S. Geological Survey Water-Supply Paper 2254. Third Edition. 264 p.

  • Hopenhayn-Rich, C., Biggs, M. L., Fuchs, A., Bergoglio, R., Tello, E. E., Nicolli, H., & Smith, A. H. (1996). Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology, 7(2), 117–124.

    Article  CAS  Google Scholar 

  • IGC (2016). Catàleg de cartografia geològica i geotemàtica. Institut Geològic de Catalunya. http://www.igc.cat. Accessed April, 2016.

  • Julià, R. (1980). La conca lacustre de Banyoles-Besalú. Monografíes del Centre d'Estudis Comarcals de Banyoles, 187 pp.

  • Karagas, M. R., Le, C. X., Morris, S., Blum, J., Lu, X., Spate, V., Carey, M., Stannard, V., Klaue, B., & Tosteson, T. D. (2001). Markers of low-level arsenic exposure for evaluating human cancer risks in a U.S. population. International Journal of Occupational Medicine and Environmental Health, 14(2), 171–175.

    CAS  Google Scholar 

  • Kendall, G. M., & Smith, T. J. (2002). Doses to organs and tissues from radon and its decay products. Journal of Radiological Protection, 22, 389–406.

    Article  CAS  Google Scholar 

  • Kilchmann, S., Waber, H. N., Parriaux, A., & Bensimon, M. (2003). Natural tracers in recent groundwaters from different Alpine aquifers. Hydrogeology Journal, 12, 643–661.

    Article  Google Scholar 

  • Kruse, E., & Mas-Pla, J. (2009). Procesos hidrogeológicos y calidad del agua en acuíferos litorales. In: J. Mas-Pla, G. M. Zuppi (Eds.), Gestión ambiental integrada de la zonas costeras – Gestão ambiental integrada dos areas costeiras (pp. 29-54). Rubes Editorial.

  • Lanaja, J. M. (1987). Contribución de la explotación petrolífera al conocimiento de la geología en España (Sondeo 147b) (p. 465). Madrid: Instituto Geológico y Minero de España.

    Google Scholar 

  • Mas-Pla, J., Bach, J., Viñals, E., Trilla, J., & Estalrich, J. (1999). Salinization processes in a coastal leaky aquifer system (Alt Empordà, NE Spain). Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(4), 337–341.

    Article  Google Scholar 

  • Mas-Pla, J., Rodríguez-Florit, A., Zamorano, M., Roqué, C., Menció, A., & Brusi, D. (2013). Anticipating the effects of groundwater withdrawal on seawater intrusion and soil settlement in urban coastal areas. Hydrological Processes, 27(16), 2352–2366.

    Article  Google Scholar 

  • Meliker, J. R., Wahl, R. L., Cameron, L. L., & Nriagu, J. O. (2007). Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan. A standardized mortality ratio analysis. Environmental Health, 6(1), 4.

    Article  Google Scholar 

  • Menció, A., & Mas-Pla, J. (2008). Assessment by multivariate analysis of surface water -groundwater interactions in urbanized Mediterranean streams. Journal of Hydrology, 352(3), 355–366.

    Article  Google Scholar 

  • Menció, A., Mas-Pla, J., Otero, N., & Soler, A. (2011). Nitrate as a tracer of groundwater flow in a fractured multi-layered aquifer. Hydrological Sciences Journal, 56(1), 108–122.

    Article  Google Scholar 

  • Menció, A., Folch, A., & Mas-Pla, J. (2012). Identifying key parameters to differentiate groundwater flow systems using multifactorial analysis. Journal of Hydrology, 472–473, 301–313.

    Article  Google Scholar 

  • Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R., Bach, J., Domènech, C., Folch, A., Zamorano, M., & Brusi, D. (2016). Nitrate pollution of groundwater; all right …, but nothing else? Science of the Total Environment, 539C, 241–251.

    Article  Google Scholar 

  • Montaner, J. (2010). El flux hidrogeològic de la plana litoral del Baix Ter. Evolució fluvial, caracterització hidrològica i pautes de gestió. Càtedra d’Ecosistemes Litorals Mediterranis – Museu de la Mediterrània, Col. Recerca i Territori 2, 236 pp.

  • Montaner, J., Teixidor, N., Boixadera, J., Solà, J., Mas-Pla, J., & Pérez, M. (1999). Presència i distribució espacial de concentracions anormals d’ió nitrat a les aigües subterrànies dels aqüífers del Baix Fluvià (Alt Empordà). Dossiers Agraris ICEA, 5: Problemes moderns en l’ús dels sòls: nitrats, pp. 115-130.

  • National Academy of Sciences (1999). Arsenic in drinking water. National Academy of Sciences Press, 273 p.

  • Pla-Giribert, N., & Mas-Pla, J. (1998). Análisis de los recursos hidrológicos destinados al abastecimiento de la Costa Brava norte. Tecnología del Agua, 178, 59–66.

    Google Scholar 

  • Pujadas, J., Casas, J. M., Muñoz, J. A., & Sàbat, F. (1989). Thrust tectonics and Paleogene syntectonic sedimentation in the Empordà area, Southeastern Pyrenees. Geodinamica Acta, 3(3), 195–206.

    Article  Google Scholar 

  • Rai, D., Eary, L. E., & Zachara, J. M. (1989). Environmental chemistry of chromium. Science of the Total Environment, 86, 15–23.

    Article  CAS  Google Scholar 

  • Re, V., Sacchi, E., Mas-Pla, J., Menció, A., & El Amrani, N. (2014). Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). Science of the Total Environment, 500–501, 211–223.

    Article  Google Scholar 

  • Salbu, B., & Steinnes, E. (1994). Trace elements in natural waters. CRC Press, 302 pp.

  • Sanz, M. (1985). Estudi hidrogeològic de la regió de Banyoles-Garrotxa. Quaderns del Centre d’Estudis Comarcals de Banyoles, 128, 1–8.

    Google Scholar 

  • Saula, E., Picart, J., Mató, E., Llenas, M., Losanto, M., Beràstegui, X., & Agustí, J. (1996). Evolución geodinámica de las fosas del Empordà y Sierras Transversales. Acta Geologica Hispánica, 29, 55–75.

    Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43, 731–736.

    CAS  Google Scholar 

  • Selinus, O., Alloway, B. J., Centeno, J. A., Finkleman, R. B., Fuge, R., Lindh, U., & Smedley, P. L. (2005). Essentials of medical geology. Impacts of the natural environment on public health (p. 812). Boston: Elsevier.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior, and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Soler, D., Zamorano, M., Roqué, C., Menció, A., Boy-Roura, M., Bach, J., Brusi, D., & Mas-Pla, J. (2014). Evaluación de la influencia de las estructuras tectónicas en la recarga del sistema hidrogeológico de la depresión del Empordà (NE España). II Congreso Ibérico de las Aguas Subterráneas. CIAS2014. Libro de actas, pp. 853-872.

  • Stollenwerk, K. G., & Grove, D. B. (1985). Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. Journal of Environmental Quality, 14, 150–155.

    Article  CAS  Google Scholar 

  • Stumm, W. (1992). Chemistry of the solid-water Interface. Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. Wiley, 428 pp.

  • Toran, L. E., & Saunders, J. A. (1999). Modeling alternative paths of chemical evolution of Na-HCO3-type groundwaters near Oak Ridge, Tenesse, USA. Hydrogeology Journal, 7, 355–364.

    Article  Google Scholar 

  • Vilanova, E., Menció, A., & Mas-Pla, J. (2008). Determinación de sistemas de flujo regionales y locales en las depresiones tectónicas del Baix Empordà y la Selva (NE de España) en base a datos hidroquímicos e isotópicos. Boletín Geológico y Minero, 119(1), 51–62.

    Google Scholar 

  • Vissers, M. J. M., van der Veer, G., van Gaans, P. F. M. et al. (2005). The controls and sources of minor and trace elements in groundwater in sandy aquifers. In: M. J. M Vissers (Ed.), Patterns of groundwater quality in sandy aquifers under environmental pressure (pp. 89–122). PhD thesis, Utrecht University.

  • Vitòria, L. (2004) Estudi multi-istòpic ( N, S, C, O, D, Sr/ Sr) de les aigües subterrànies contaminades per nitrats d'orígen agrícola i ramader. PhD dissertation. Universitat de Barcelona.

  • Walker, M., Seiler, R. L., & Meinert, M. (2008). Effectiveness of household reverse-osmosis systems in a western U.S. region with high arsenic in groundwater. Science of the Total Environment, 389(2-3), 245–252.

    Article  CAS  Google Scholar 

  • WHO. (2008). Drinking water quality: third edition incorporating the first and second addenda, volume 1: recommendations. Geneva: World Health Organization.

    Google Scholar 

  • Wu, M. M., Kuo, T. L., Hwang, Y. H., & Chen, C. J. (1989). Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology, 130(6), 1123–1132.

    CAS  Google Scholar 

Download references

Acknowledgments

This study has been developed under the Spanish Government Project CGL2011-29975-c04-04 and continued under Project CGL2014-57215-C4-2-R and the University of Girona fund MPCUdG2016/061. We also thank the contributions of the reviewers who helped in the improvement of the manuscript with their critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Mas-Pla.

Additional information

Highlights

• Trace element (TE) occurrence, and hazard, cannot be intuitively related to hydrogeological units.

• Exploratory analyses based on averaged TE data discern associations and processes.

• PCA loadings endorse the observed TE role on geochemical processes.

• PCA scores assign TE to aquifers despite the knowledge of their mineralogy is vague.

• Specific TE at specific locations points out recharge processes of regional relevance that induce large TE inputs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 125 kb)

ESM 2

(PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mas-Pla, J., Menció, A., Bach, J. et al. Trace Element Groundwater Pollution Hazard in Regional Hydrogeological Systems (Empordà Basin, NE Spain). Water Air Soil Pollut 227, 218 (2016). https://doi.org/10.1007/s11270-016-2891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2891-2

Keywords

Navigation