Skip to main content
Log in

Biodegradation of Bis-Azo Dye Reactive Black 5 by White-Rot Fungus Trametes gibbosa sp. WRF 3 and Its Metabolite Characterization

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The culture of Trametes gibbosa sp. white-rot fungi (WRF) 3 under mesophilic conditions can lead to the degradation of azo dye compounds. This ability of T. gibbosa sp. WRF 3 is attributed to the released enzymes that are able to catalyze the structural degradation of the azo dye compound. The effect of environmental factors such as carbon sources, nitrogen sources, and pH of growth medium were investigated in this research. The addition of 20 g/L glucose (carbon source) and yeast extract (nitrogen source) at pH 5 of growth medium enhanced the decolorization of Reactive Black 5 (RB5) dye up to 87.07 % within 30 days of incubation. The decolorization of RB5 can be analyzed using UV–vis spectroscopy and differential pulse cathodic stripping voltammetry (DPCSV). The maximum absorbance of RB5 was at 597 nm and decreased after the dye was treated with T. gibbosa sp. WRF 3. In the voltammetric analysis, we examined the effect of pH of Britton–Robinson buffer (BRB) medium on the detection of bis-azo compound of RB5. A stock solution of RB5 was used in the study, and it showed two reduction peak potentials at −0.5 and −0.7 V which attributed to the bis-azo bond, whereas the metabolic product showed one reduction peak at −0.6 V. The GC-MS mass spectrum confirmed the formation of metabolites at t R 4.63 min and m/z of 73 after 30 days of incubation which was sec-butylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali, H. (2010). Biodegradation of synthetic dyes-a review. Water, Air, & Soil Pollution, 213, 251–273.

    Article  CAS  Google Scholar 

  • Barek, J., Fogg, A. G., Moreira, J. C., Zanoni, M. V. B., & Zima, J. (1996). Polarographic and voltammetric determination of selected triazine-based azo dyes with different reactive groups. Analytica Chimica Acta, 31, 31–42.

    Article  Google Scholar 

  • Chakraborty, S., Basak, B., Dutta, S., Bhunia, B., & Dey, A. (2013). Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology. doi:10.1016/j.biortech.2013.08.117.

    Google Scholar 

  • Deivasigamani, C., & Das, N. (2011). Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater. Biodegradation, 22, 1169–1180.

    Article  CAS  Google Scholar 

  • Enayatizamir, N., Tabandeh, F., Rodriguez-Couto, S., Yakhchali, B., Alikhani, H. A., & Mohammadi, L. (2011). Biodegradation pathway and detoxification of the diazo dye reactive black 5 by Phanerochaete chrysosporium. Bioresource Technology, 102, 10359–10362.

    Article  CAS  Google Scholar 

  • Fogg, A., Yusoff, A. R. M., & Rahmalan, A. (1997). Cathodic stripping voltammetry of copper-complexed reactive dyes at a hanging mercury drop electrode: Reactive Violet 5. Talanta, 44, 125–129.

    Article  CAS  Google Scholar 

  • Fu, Y., & Viraraghavan, T. (2002). Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 7, 239–247.

    Article  CAS  Google Scholar 

  • Guaratini, C. C. I., Fogg, A. G., & Zanoni, M. V. B. (2001). Assessment of the application of cathodic stripping voltammetry to the analysis of diazo reactive dyes and hydrolysis products. Dyes and Pigments, 50, 211–221.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2012a). Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresource Technology, 107, 314–318.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2012b). Identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of Polyporus sp. Journal of Environmental Management, 111, 115–119.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2013). Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess and Biosystems Engineering, 36, 461–468.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Tachibana, S., & Itoh, K. (2007). Biodegradation of n-eicosane by fungi screened from nature. Pakistan Journal of Biological Sciences, 10(11), 1804–1810.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Yusoff, A. R. M., & Kristanti, R. A. (2012). Decolorization and metabolism of anthraquinone-type dye by laccase of white-rot fungi Polyporus sp. S133. Water, Air & Soil Pollution, 223, 933–941.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Adnan, L. A., Yusoff, A. R. M., Yuniarto, A., Rubiyatno, Zubir, M. M. F. A., Khudhair, A. B., Teh, Z. C., & Naser, M. A. (2013). Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water, Air, & Soil Pollution, 224, 1595.

    Article  Google Scholar 

  • Hou, B., Hu, Y., & Sun, J. (2012). Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresource Technology, 111, 105–110.

    Article  CAS  Google Scholar 

  • Kandelbauer, A., Guebitz, G.M. (2005). Bioremediation for the decolorization of textile dyes-a review. In Dr. E. Lichtfouse, Dr. J. Schwarzbauer, Dr. D. Robert (Eds.), Environmental chemistry: green chemistry and pollutants in ecosystems. Berlin: Springer

  • Kapich, A. N., Jensen, K. A., & Hammel, K. E. (1999). Peroxyl radicals are potential agents of lignin biodegradation. FEBS Letters, 461, 115–119.

    Article  CAS  Google Scholar 

  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Research. doi:10.4061/2011/805187.

    Google Scholar 

  • Kaushik, P., & Malik, A. (2009). Fungal dye decolorization: recent advances and future potential. Environment International, 35, 127–141.

    Article  CAS  Google Scholar 

  • Kelifi, E., Ayed, L., Bouallagui, H., Touhami, Y., & Hamdi, M. (2009). Effect of nitrogen and carbon sources on Indigo and Congo red decolorization by Aspergillus alliaceus strain 121C. Journal of Hazardous Materials, 163, 1056–1062.

    Article  Google Scholar 

  • Kout, J., & Vlasak, J. (2007). Trametes gibbosa (Basidiomycetes, Polyporales) in the USA and Canada. Canadian Journal of Botany, 85, 342–346.

    Article  Google Scholar 

  • Læssøe, T., Lincoff, G., Edwards, E. H., & Fletcher, N. (1998). Mushrooms. London: Dorling Kindersley Publisher Limited.

    Google Scholar 

  • Liu, X., Zhang, J., Jiang, J., Li, R., Xie, Z., & Li, S. (2011). Biochemical degradation pathway of reactive blue 13 by Candida rugopelliculosa HXL-2. International Biodeterioration & Biodegradation, 66, 135–141.

    Article  Google Scholar 

  • Lucas, M. S., Amaral, C., Sampaio, A., Peres, J. A., & Dias, A. A. (2006). Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme and Microbial Technology, 39, 51–55.

    Article  CAS  Google Scholar 

  • Menati, S., Azadbakht, A., Azadbakht, R., Taeb, A., & Kakanejadifard, A. (2013). Synthesis, characterization, and electrochemical study of some novel, azo-containing Schiff bases and their Ni(II) complexes. Dyes and Pigments, 98, 499–506.

    Article  CAS  Google Scholar 

  • O’Mahony, T., Guibal, E., & Tobin, J. M. (2002). Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 31, 456–463.

    Article  Google Scholar 

  • Palmieri, G., Cennamo, G., & Sannia, G. (2005). Remazol Brilliant Blue R decolorization by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme and Microbial Technology, 36, 17–24.

    Article  CAS  Google Scholar 

  • Revankar, M. S., & Lele, S. S. (2007). Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1. Bioresource Technology, 98, 775–780.

    Article  CAS  Google Scholar 

  • Trindade, M. A. G., & Zanoni, M. V. B. (2009). Voltammetric sensing of the fuel dye marker Solvent Blue 14 by screen-printed electrodes. Sensors and Actuators B: Chemical, 138, 257–263.

    Article  CAS  Google Scholar 

  • Uhnakova, B., Ludwig, R., Peknicova, J., Homolka, L., Lisa, L., Sulc, M., Petrickova, A., Elzeinova, F., Pelantova, H., Monti, D., Kren, V., Haltrich, D., & Martinkova, L. (2011). Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresource Technology, 102, 9409–9415.

    Article  CAS  Google Scholar 

  • Yang, Q., Yediler, A., Yang, M., & Kettrup, A. (2005). Decolorization of an azo dye, Reactive Black 5 and MnP production by yeast isolate: Debaryomyces polymorphus. Biochemical Engineering Journal, 24, 249–253.

    Article  CAS  Google Scholar 

  • Yi-Chin, T., Lin, Y. J., Obbard, J. P., & Yen-Peng, T. (2003). Decolorization of azo-dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme and Microbial Technology, 33, 569–575.

    Article  Google Scholar 

  • Zhao, X., Hardin, I. R., & Hwang, H. M. (2005). Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. International Biodeterioration & Biodegradation, 57, 1–6.

    Article  Google Scholar 

Download references

Acknowledgments

A part of this research was financially supported by Fundamental Research Grant Scheme from Ministry of Education, Malaysia (Vote R.J130000.7809.4F312), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdull Rahim Mohd Yusoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, L.A., Mohd Yusoff, A.R., Hadibarata, T. et al. Biodegradation of Bis-Azo Dye Reactive Black 5 by White-Rot Fungus Trametes gibbosa sp. WRF 3 and Its Metabolite Characterization. Water Air Soil Pollut 225, 2119 (2014). https://doi.org/10.1007/s11270-014-2119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2119-2

Keywords

Navigation