Skip to main content
Log in

Estimation of Soil Base Cation Weathering Rates with the PROFILE Model to Determine Critical Loads of Acidity for Forested Ecosystems in Pennsylvania, USA: Pilot Application of a Potential National Methodology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Base cation weathering (BCw) rate is one of the most influential yet difficult to estimate parameters in the calculation of critical acid loads of nitrogen (N) and sulfur (S) deposition for terrestrial systems. Only the clay correlation–substrate method, a simple empirical model, has been used for estimating BCw rates for forest ecosystems in the conterminous USA and may not be suitable for application at all sites without calibration or revision. An alternate model, PROFILE, may offer an improved method to estimate BCw rates. It is a transferable, process-based model that simulates the weathering rates of groups of minerals. The objective of this study was to evaluate PROFILE using national datasets as a method to estimate BCw rates for forests in the USA, focusing on Pennsylvania (PA) as the first test state. The model paired with national datasets was successfully applied at 51 forested sites across PA. Weathering rates ranged from 119 to 9,245 eq ha−1 year−1 and were consistent with soil properties and regional geology. Comparisons of terrestrial critical acid loads with 2002 N and S deposition showed critical load exceedances at 53 % of the sites. This trial evaluation of PROFILE paired with national datasets in PA establishes that there are sufficient data to support the estimation of BCw rates and determination of critical acid loads for forests in the USA. However, the paired method should be applied in other locations to further evaluate the performance of the model in different regions of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Although soil series were included in the site selection process, it was beyond the scope of the USGS Landscapes Project to confirm that the soil samples were collected from the dominant soil series. GIS overlays with SSURGO soil series data layers indicated 1 to 5 soil series at each location.

References

  • Arp, P. A., Oja, T., & Marsh, M. (1996). Calculating critical S and N loads and current exceedances for upland forests in southern Ontario. Canadian Journal of Forest Research, 26, 696–709.

    Article  CAS  Google Scholar 

  • Binkley, D., & Fischer, R. F. (2013). Ecology and management of forest soils (4th ed.). New Jersey: Wiley.

    Google Scholar 

  • Bobbink, R., & Hettelingh, J.-P. (Eds.). (2011). Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010, Coordination Centre of Effects (CCE), National Institute for Public Health and the Environment (RIVM), The Netherlands.

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & de Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

    Article  CAS  Google Scholar 

  • DeHayes, D. H., Schaberg, P. G., Hawley, G. J., & Strimbeck, G. R. (1999). Acid rain impacts on calcium nutrition and forest health. Bioscience, 49, 789–800.

    Article  Google Scholar 

  • Dixon, J. B., & Jackson, M. L. (1959). Mineralogical analysis of soil clays involving vermiculite-chlorite-kaolinite differentiation. Clays and Clay Minerals, 8, 274–286.

    Article  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eager, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience, 51, 180–198.

    Article  Google Scholar 

  • Driscoll, C. T., Whitall, D., Aber, J., Boyer, E., Castro, M., Cronan, C., Goodale, C., Groffman, P., Hopkinson, C., Lambert, K., Lawrence, G., & Ollinger, S. (2003). Nitrogen pollution in the northeastern United States: sources, effects and management options. Bioscience, 53, 357–374.

    Article  Google Scholar 

  • Duarte, N., Pardo, L. H., & Robin-Abbott, M. J. (2013). Susceptibility of forests in the northeastern USA to nitrogen and sulfur deposition: critical load exceedance and forest health. Water, Air, & Soil Pollution. doi:10.1007/s11270-012-1355-6.

    Google Scholar 

  • Fahey, T. J., & Hughes, J. W. (1994). Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology, 82, 533–548.

    Article  Google Scholar 

  • Fenn, M. E., Huntington, T. G., McLaughlin, S. B., Eagar, C., Gomez, A., Cook, R. B. (2006). Status of soil acidification in North America. Journal of Forest Science, 52(Special Issue), 3–13.

  • Garey, C. L. (1956). Clay mineral distribution in the soil areas of Arkansas. Clays and Clay Minerals, 5, 197–202.

    Article  Google Scholar 

  • Gerbert, W. A., Graczyk, D. J., Krug, W. R. (1987). Average annual runoff in the United States, 1951–80, http://water.usgs.gov/lookup/getspatial?runoff.

  • Hellsten, S., van Loon, M., Tarrason, L., Vestreng, V., Torseth, K., Kindbom, K., Aas, W. (2007). Base cations deposition in Europe. IVL Swedish Environmental Research Institute Ltd. Report.

  • Hendrick, R. L., & Pregitzer, K. S. (1996). Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. Journal of Ecology, 84, 167–176.

    Article  Google Scholar 

  • Hodson, M. E., & Langan, S. J. (1999). Considerations of uncertainty in setting critical loads of acidity of soils: the role of weathering rate determinations. Environmental Pollution, 106, 73–81.

    Article  CAS  Google Scholar 

  • Hunt, C. B. (1986). Surficial deposits of the United States. New York: Van Nostand Reinhold Company Inc.

    Google Scholar 

  • Jönsson, C., Warfvinge, P., & Sverdrup, H. (1995). Uncertainty in predicting weathering rate and environmental stress factors with the PROFILE model. Water, Air, & Soil Pollution, 81, 1–23.

    Article  Google Scholar 

  • Koseva, I. S., Watmough, S. A., & Aherne, J. (2010). Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model. Biogeochemistry, 101, 183–196.

    Article  Google Scholar 

  • Kurz, D., Rihm, B., Sverdrup, H., Warfvinge, P. (1998). Critical Loads of acidity for forest soils: regionalized PROFILE model. Environmental Documentation No. 88. Swiss Agency for the Environment, Forests and Landscapes (SAEFL). Bern, Switzerland.

  • Li, H., & McNulty, S. G. (2007). Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity. Environmental Pollution, 149, 315–326.

    Article  CAS  Google Scholar 

  • McClaugherty, C. A., Aber, J. D., & Melillo, J. M. (1982). The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 63, 1481–1490.

    Article  Google Scholar 

  • McNulty, S. G., Boggs, J., Aber, J. D., Rustad, L., & Magill, A. (2005). Red spruce ecosystem level changes following 14 years of chronic nitrogen fertilization. Forest Ecology and Management, 219, 279–291.

    Article  Google Scholar 

  • McNulty, S. G., Cohen, E. C., Li, H., & Moore-Myers, J. A. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149, 281–292.

    Article  CAS  Google Scholar 

  • Miller, E. (2001). Estimating soil weathering rates, appendix 3. In: NEG/ECP Forest Mapping Group (Conference of New England Governors and Eastern Canadian Premiers Forest Mapping Group). Protocol for assessment and mapping of forest sensitivity to atmospheric S and N deposition: Acid Rain Action Plan—Action Item 4: Forest Mapping Research Project, http://www.nrs.fs.fed.us/clean_air_water/clean_water/critical_loads/local-resources/docs/NEGECP_Forest_Sensitivity_Protocol_5_21_04.pdf.

  • Miller, E. (2011). Steady-state critical loads and exceedance for terrestrial and aquatic ecosystems in the northeastern United States. Technical report. NPS / Multi Agency Critical Loads Project, http://www.nescaum.org/documents/steady-state-critical-loads-and-exceedance-for-terrestrial-and-aquatic-ecosystems-in-the-northeastern-united-states/steady-state-critical-loads-and-exceedance-for-terrestrial-and-aquatic-ecosystems-in-the-northeastern-united-states.

  • Mongeon, A., Aherne, J., & Watmough, S. A. (2010). Impacts of sulfur and nitrogen deposition in western Canada. Journal of Limnology, 69, 193–200.

    Article  Google Scholar 

  • National Aeronautics and Space Administration (NASA). (2013). NLDAS Noah Land Surface Model L4 Monthly 0.125 × 0.125 degree. V.2, http://mirador.gsfc.nasa.gov/collections/NLDAS_NOAH0125_M__002.shtml.

  • National Atlas of the U.S. (2013). Glacial limits, http://www.nationalatlas.gov/articles/geology/a_glacial.html.

  • New England Governors/Eastern Canadian Premiers (NEG/ECP). (2001). Protocol for assessment and mapping of forest sensitivity to atmospheric S and N deposition. Acid Rain Action Plan. Action Item 4: Forest Mapping Research Project.

  • New England Governors/Eastern Canadian Premiers (NEG/ECP). (2007). Mapping sensitivity to atmospheric acid deposition, 2006–2007 annual report.

  • Nilsson, J., & Grennfelt, P.-I. (Eds.). (1988). Critical loads for sulphur and nitrogen, vol. 15. Copenhagen, Denmark: Milijorapport: Nordic Council of Ministers.

    Google Scholar 

  • Omernik, J. M., & Powers, C. F. (1983). Map supplement: total alkalinity of surface waters—a national map. Annals of the Association of American Geographers, 73, 133–136.

    Article  Google Scholar 

  • Ouimet, R., Arp, P. A., Watmough, S. A., Aherne, J., & DeMerchant, I. (2006). Determination and mapping critical loads of acidity and exceedances for upland forest soils in Eastern Canada. Water, Air, & Soil Pollution, 172, 57–66.

    Article  CAS  Google Scholar 

  • Ouimet, R., Moore, J.-D., & Duchesne, L. (2008). Effects of experimental acidification and alkalinization on soil and growth and health of Acer saccharum Marsh. Journal of Plant Nutrition and Soil Science, 171, 858–871.

    Article  CAS  Google Scholar 

  • Pardo, L. H., & Duarte, N. (2007). Assessment of effects of acidic deposition on forested ecosystems in Great Smoky Mountains National Park using critical loads for sulfur and nitrogen. U.S. Department of Agriculture, Forest Service.

  • Pardo, L. H., Robin-Abbott, M., Duarte, N., Miller, E. K. (2004). Tree Chemistry Database (Version 1.0). U.S. Forest Service (Northern Research Station), General Technical Report NE-324.

  • Pardo, L. H., Fenn, M., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Baron, A. E. J., Bobbink, R., Bowman, W. D., Clark, C., Emmett, B., Gilliam, F. S., Greaver, T., Hall, S. J., Lilleskov, E. A., Liu, L., Lynch, J., Nadelhoffer, K., Perakis, S., Robin-Abbott, M. J., Stoddard, J., Weather, K., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical nitrogen loads for ecoregions of the United States. Ecological Applications, 21, 3049–3082.

    Article  Google Scholar 

  • Pennsylvania Department of Conservation and Natural Resources (PA DCNR). (2012). Interactive map viewer: bedrock geology and physiographic section data layers, http://www.gis.dcnr.state.pa.us/maps/index.html?geology=true.

  • RTI International. (2013). Application of the base cation weathering (BCw) methodology and PROFILE model to calculate terrestrial critical loads in Pennsylvania: evaluation of USGS Landscapes Project database as source of soil mineralogy data. Report prepared for the U.S. Environmental Protection Agency, Office of Air Quality and Pollution Standards, Research Triangle Park, NC.

  • Sheppe, V. C., White, G. W., Droste, J. B., Sitler, H. F. (1959). Glacial geology of northwestern Pennsylvania. Topographic and geologic Survey Bulletin G 32; Commonwealth of Pennsylvania, Department of Internal Affairs, http://www.dcnr.state.pa.us/topogeo/publications/pgspub/general/index.htm#G32.

  • Smith, D. B., Cannon, W. F., & Woodruff, L. G. (2011). A national-scale geochemical and mineralogical survey of soils of the conterminous United States. Applied Geochemistry, 26, S250–S255.

    Article  CAS  Google Scholar 

  • Smith, D. B., Cannon, W. F., Woodruff, L. G., Rivera, F. M., Rencz, A. N., & Garrett, R. G. (2012). History and progress of the North American Soil Geochemical Landscapes Project, 2001–2010. Earth Science Frontiers, 19, 19–32.

    CAS  Google Scholar 

  • Smith, D. B., Smith, S. M., & Horton, J. D. (2013a). History and evaluation of national-scale geochemical data sets for the United States. Geoscience Frontiers, 4, 167–183.

    Article  CAS  Google Scholar 

  • Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, Federico, Kilburn, J. E., Fey, D. L. (2013b). Geochemical and mineralogical data for soils of the conterminous United States: U.S. Geological Survey Data Series 801, http://pubs.usgs.gov/ds/801/.

  • Stendahl, J., Akselsson, C., Melkerud, P. A., & Belyazid, S. (2013). Pedon-scale silicate weathering in forest soils in different time scales; comparing concepts in weathering rates from the PROFILE model and the depletion method. Geoderma, 211, 65–74.

    Article  Google Scholar 

  • Sverdrup, H. (1990). The kinetics of base cation release due to chemical weathering. Lund: Lund University Press.

    Google Scholar 

  • Sverdrup, H., & Stjernquist, I. (Eds.). (2002). Managing forest ecosystems: Developing principles and models for sustainable forestry in Sweden. Lund: The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1993). Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8, 273–283.

    Article  CAS  Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1995). Estimating field weathering rates using laboratory kinetics. In A. White, & S. Brantley (Eds.). Weathering kinetics of silicate minerals. Volume 8. Reviews in mineralogy (pp. 485–542), Mineralogical Society of America.

  • Sverdrup, H., de Vries, W., & Henricksen, A. (1990). Mapping critical loads: A guidance to the criteria, calculations, data collection, and mapping of critical loads. Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Sverdrup, H., Warfvinge, P., Rabenhorst, M., Janicki, A., Morgan, R., & Bowman, M. (1992). Critical loads and steady-state chemistry for streams in the state of Maryland. Environmental Pollution, 77, 195–203.

    Article  CAS  Google Scholar 

  • U.S. Department of Agriculture – National Resources Conservation Service (USDA-NRCS). (1999). Dominant soil orders in the United States, ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/maps.pdf.

  • U.S. Department of Agriculture – National Resources Conservation Service (USDA-NRCS). (2013). Soil Survey Geographic (SSURGO) Database for Pennsylvania, http://soildatamart.nrcs.usda.gov.

  • U.S. Department of Agriculture–National Resources Conservation Service (USDA-NRCS). (2004). Soil survey laboratory methods manual. Soil Survey Investigations Report. No. 42. Version 4.0 735, ftp://ftp-fc.sc.egov.usda.gov/NSSC/Lab_Methods_Manual/SSIR42_2004_view.pdf.

  • U.S. Environmental Protection Agency (USEPA). (2009a). Clean Air Status and Trends Network (CASTNET) 2009 Annual Report, http://epa.gov/castnet/javaweb/docs/annual_report_2009.pdf.

  • U.S. Environmental Protection Agency (USEPA). (2009b). Risk and exposure assessment for review of the secondary national ambient air quality standards for oxides of nitrogen and oxides of sulfur. EPA-452/R-09-008a. Office of Air Quality Planning and Standards, http://cfpub.epa.gov/ols/catalog/catalog_display.cfm?&FIELD1=SUBJECT&INPUT1=Sulfur%20oxides&TYPE1=EXACT&item_count=11.

  • U.S. Environmental Protection Agency (USEPA). (2011). National Acid Precipitation Assessment Program Report to Congress 2011: an integrated assessment, http://ny.water.usgs.gov/projects/NAPAP/NAPAP_2011_Report_508_Compliant.pdf.

  • U.S. Forest Service (USFS). (2008). National forest type dataset, http://fsgeodata.fs.fed.us/rastergateway/forest_type/.

  • U.S. Geological Survey (USGS). (2013). Soil geochemical landscapes of the conterminous United States, http://minerals.cr.usgs.gov/projects/soil_geochemical_landscapes/index.html.

  • United Nations Economic Commission for Europe (UNECE). (2004). Manual on methodologies and criteria for modeling and mapping critical loads and levels and air pollution effects, risks, and trends. Convention on Long-Range Transboundary Air Pollution, Geneva Switzerland, http://www.icpmapping.org.

  • Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE: a steady-state soil chemistry model. Water, Air, & Soil Pollution, 63, 119–143.

    Article  CAS  Google Scholar 

  • Warfvinge, P., & Sverdrup, H. (1995). Critical loads of acidity to Swedish forest soils: methods, data and results. Reports in Ecology and Environmental Engineering 5. Lund University, Chemical Engineering II.

  • Warfvinge, P., Falkengren-Grerup, U., Sverdrup, H., & Andersen, B. (1993). Modelling long-term cation supply in acidified forest stands. Environmental Pollution, 80, 209–221.

    Article  CAS  Google Scholar 

  • Waring, R. H., & Running, S. W. (2010). Forest ecosystems: Analysis at multiple scales. Burlington: Elsevier Academic Press.

    Google Scholar 

  • Watmough, S. A., Aherne, J., & Dillon, P. J. (2004). Critical loads Ontario: Relating exceedance of the critical loads with biological effects at Ontario forests. Report 2, Environmental and Resource Studies. Ontario: Trent University.

    Google Scholar 

  • Watmough, S., Aherne, J., Arp, P., DeMerchant, I., & Ouimet, R. (2006). Canadian experiences in development of critical loads for sulphur and nitrogen. In C. Aguirre-Bravo, P. J. Pellicane, D. P. Burns, & S. Draggan (Eds.), Monitoring science and technology symposium: Unifying knowledge for sustainability in the western hemisphere proceedings RMRS-P-42CD. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Whitfield, C. J., Aherne, J., Watmough, S. A., & McDonald, M. (2010). Estimating the sensitivity of forest soils to acid deposition in the Athabasca Oil Sands Region, Alberta. Journal of Limnology, 69, 201–208.

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the U.S. Environmental Protection Agency (EPA). Any opinions, findings, conclusions, or recommendations are those of the authors and do not necessarily reflect the views of the EPA. The authors wish to thank William Cannon and David Smith for their assistance with the USGS Landscapes Project soil mineralogy dataset, Mike Wilson for his assistance with the USDA-NRCS SSURGO soil database, and Jason Lynch and Tara Greaver for their support and constructive review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Phelan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phelan, J., Belyazid, S., Kurz, D. et al. Estimation of Soil Base Cation Weathering Rates with the PROFILE Model to Determine Critical Loads of Acidity for Forested Ecosystems in Pennsylvania, USA: Pilot Application of a Potential National Methodology. Water Air Soil Pollut 225, 2109 (2014). https://doi.org/10.1007/s11270-014-2109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2109-4

Keywords

Navigation