Skip to main content
Log in

Metals in Waste Foundry Sands and an Evaluation of Their Leaching and Transport to Groundwater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

While most waste foundry sands (WFSs) are not hazardous, regulatory agencies are often reluctant to permit their beneficial use in agricultural and geotechnical applications due to concerns over metal leaching. The objective of this study was to quantify total and Toxicity Characteristic Leaching Procedure (TCLP) metals in 16 waste sands from Brazilian ferrous foundries then assess their potential to leach to groundwater using a probabilistic model. Total and TCLP metal concentrations in the non-hazardous sands fell within ranges as reported in the literature, although some of the leachate concentrations were found to exceed drinking water and groundwater maximum contaminant levels (MCLs). Leachate values above the MCLs were then used in the model to estimate groundwater concentrations at hypothetical wells up to 400m downgradient from a land application unit. A conservative scenario of 1 ha of land applied WFS, and high annual rainfall totals (low evaporation) suggested that groundwater concentrations of Ba, Hg, Mn, Ni, and Pb could potentially exceed health-based MCLs at most wells. While a wet climate can exacerbate the transport of metals, land application of WFSs in areas with moderate rainfall totals or high rainfall, high evaporation was predicted to be protective of groundwater quality and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABNT (Associação Brasileira de Normas Técnicas) (2004a). NBR 10004, Resíduos Sólidos–Classificação. Available at http://www.abntcatalogo.com.br/norma.aspx?ID=936 (accessed 1 Jul 2013).

  • ABNT (Associação Brasileira de Normas Técnicas) (2004b). NBR 10007, Amostragem de Resíduos Sólidos. Available at http://www.abntcatalogo.com.br/norma.aspx?ID=1102 (accessed 1 Jul 2013).

  • Baba, A., & Kaya, A. (2004). Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. Journal of Environmental Management, 73, 199–207.

    Article  Google Scholar 

  • Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Journal of Environmental Quality, 34, 49–63.

    CAS  Google Scholar 

  • Carey, P. (2002). Sand/binders/sand preparation/ & coremaking. Foundry Management and Technology, 39–52.

  • Carnin, R. L. P., Silva, C. O., Pozzi, R. J., Cardoso, D., Folgueras, M. V., & Malkowski, W. (2010). Desenvolvimento de peças de concreto (Paver) contendo areia descartada de fundição para pavimento intertravado. Revista Pavimentação, Ano V, Out/Nov/Dez. pp. 56–67.

  • Carnin, R. L. P., Folgueras, M. V., Luvizao, R. R., Correia, S. L., Jorge da Cunha, C., & Dungan, R. S. (2012). Use of an integrated approach to characterize the physicochemical properties of foundry green sands. Thermochimica Acta, 543, 150–155.

    Article  CAS  Google Scholar 

  • CETESB (Companhia de Technologia de Saneamento Ambiental) (2007). Decisão de Diretoria No 152, de 08 de Agosto de 2007. Available at http://www.cetesb.sp.gov.br/solo/residuos/ger_areia_fund_errata.pdf (accessed 25 Jan 2013).

  • CONSEMA (Conselho Estadual do Meio Ambiente) (2008). Resolução No 011, de 26 de Agosto de 2008. Available at http://www.sds.sc.gov.br/index.php?option=com_docman&task=doc_download&gid=261&lang= (accessed 25 Jan 2013).

  • CONAMA (Conselho Nacional do Meio Ambiente) (2009). Resolução No 420, de 28 de Dezembro de 2009. Available at http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620 (accessed 1 Jul 2013).

  • Dayton, E. A., Whitacre, S. D., Dungan, R. S., & Basta, N. T. (2010). Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant and Soil, 329, 27–33.

    Article  CAS  Google Scholar 

  • Deng, A., & Tikalsky, P. J. (2008). Geotechnical and leaching properties of flowable fill incorporating waste foundry sand. Waste Management, 28, 2161–2170.

    Article  CAS  Google Scholar 

  • Deng, A. (2009). Contaminants in waste foundry sand and its leachate. International Journal of Environmental Pollution, 38, 425–443.

    Article  CAS  Google Scholar 

  • Dungan, R. S., & Reeves, J. B., III. (2005). Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry. Journal of Environmental Science and Health, 40, 1557–1567.

    Article  CAS  Google Scholar 

  • Dungan, R. S. (2006). Polycyclic aromatic hydrocarbons and phenolics in ferrous and non-ferrous waste foundry sands. Journal of Residuals Science and Technology, 3, 203–209.

    CAS  Google Scholar 

  • Dungan, R. S., & Dees, D. H. (2007). Use of spinach, radish, and perennial ryegrass to assess the availability of metals in waste foundry sands. Water Air and Soil Pollution, 183, 213–223.

    Article  CAS  Google Scholar 

  • Dungan, R. S., & Reeves, J. B., III. (2007). Pyrolysis of carbonaceous foundry sand additives: seacoal and gilsonite. Thermochimica Acta, 460, 60–66.

    Article  CAS  Google Scholar 

  • Dungan, R. S., & Dees, N. H. (2009). The characterization of total and leachable metals in foundry molding sands. Journal of Environmental Management, 90, 539–548.

    Article  CAS  Google Scholar 

  • Dungan, R. S., Huwe, J., & Chaney, R. L. (2009). Concentrations of PCDD/PCDFs and PCBs in spent foundry sands. Chemosphere, 75, 1232–1235.

    Article  CAS  Google Scholar 

  • Jing, J., & Barnes, S. (1993). Agricultural use of industrial by-products. Biocycle, 34, 63–64.

    Google Scholar 

  • Kendell, D. S. (2003). Toxicity characteristic leaching procedure and iron treatment of brass foundry waste. Environmental Science & Technology, 37, 367–371.

    Article  Google Scholar 

  • Lee, T., Benson, C. H., & Eykholt, G. R. (2004a). Waste green sands as reactive media for groundwater contaminated with trichloroethylene (TCE). Journal of Hazardous Materials, B109, 25–36.

    Article  Google Scholar 

  • Lee, T., Park, J.-W., & Lee, J.-H. (2004b). Waste green sands as reactive media for the removal of zinc from water. Chemosphere, 56, 571–581.

    Article  CAS  Google Scholar 

  • Lindsay, B. J., & Logan, T. J. (2005). Agricultural reuse of foundry sand. Journal of Residuals Science and Technology, 2, 3–12.

    CAS  Google Scholar 

  • Miguel, R. E., Ippolito, J. A., Leytem, A. B., Porta, A. A., Noriega, R. B. B., & Dungan, R. S. (2012). Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries. Journal of Environmental Management, 110, 77–81.

    Article  CAS  Google Scholar 

  • Miguel, R. E., Ippolito, J. A., Porta, A. A., Noriega, R. B. B., & Dungan, R. S. (2013). Use of standardized procedures to evaluate metal leaching from waste foundry sands. Journal of Environmental Quality, 42, 615–620.

    Article  CAS  Google Scholar 

  • Ministério da Saúde (2011). Portaria MS No 2914, de 12 de Dezembro de 2011. Available at http://www.comitepcj.sp.gov.br/download/Portaria_MS_2914-11.pdf (accessed 1 Jul 2013).

  • Modern Casting (2010). 44th Census of World Casting Production. December. Available at http://www.thewfo.com/uploads/file/US%20Censes%20Dec%202010.pdf (accessed 1 Jul 2013).

  • Partridge, B. K., Fox, P. J., Alleman, J. E., & Mast, D. G. (1999). Field demonstration of highway embankment construction using waste foundry sand. Transportation Research Record, 1670, 98–105.

    Article  Google Scholar 

  • Siddique, R., Kaur, G., & Rajor, A. (2010). Waste foundry sand and its leachate characteristics. Resources Conservation and Recycling, 54, 1027–1036.

    Article  Google Scholar 

  • Singh, G., & Siddique, R. (2012). Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete. Construction and Building Materials, 26, 416–422.

    Article  Google Scholar 

  • Sota, J. D., Barreda, M. F., Monzón, J. D., Banda Noriega, R. B. B., & Miguel, R. E. (2007). Hormigones de cement Portland con arenas de fundición. Revista Técnica Cemento Hormigón, 900, 46–55.

    Google Scholar 

  • U.S. DOT (2004). Foundry Sand Facts for Civil Engineers. FHWA-IF-04-004. Federal Highway Administration and U.S. Environmental Protection Agency, Washington DC. Available at http://isddc.dot.gov/OLPFiles/FHWA/011435.pdf (accessed 1 Jul 2013).

  • U.S. EPA (1992). Toxicity characteristic leaching procedure, method 1311. SW-846 On-line. Available at http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf (accessed 1 Jul 2013).

  • U.S. EPA (2002a). Industrial Waste Management Evaluation Model (IWEM) User’s Guide. EPA530-R-02-013. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington DC. Available at http://www.epa.gov/osw/nonhaz/industrial/tools/iwem/ (accessed 1 Jul 2013).

  • U.S. EPA (2002b). IWEM Technical Background Document. EPA530-R-02-012. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington DC. http://www.epa.gov/wastes/nonhaz/industrial/tools/iwem/ (accessed 1 Jul 2013).

  • U.S. EPA (2007a). Microwave assisted acid digestion of sediments, sludges, soils, and oils, method 3051a. SW-846 On-line. Available at http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf (accessed 1 Jul 2013).

  • U.S. EPA (2007b). Inductively coupled plasma-atomic emission spectrometry, method 6010C. SW-846 On-line. Available at http://www.epa.gov/waste/hazard/testmethods/sw846/pdfs/6010c.pdf (accessed 1 Jul 2013).

  • U.S. EPA (2007c). Mercury in solid or semisolid waste (manual cold-vapor technique), method 7471B. SW-846 On-line. Available at http://www.epa.gov/waste/hazard/testmethods/sw846/pdfs/7471b.pdf (accessed 1 Jul 2013).

Download references

Acknowledgments

The authors are very grateful to Rangel Carlos Eisenhut from the Brazilian Foundry Association for organizing the foundries that participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Dungan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, B.S.Q., Dungan, R.S., Carnin, R.L.P. et al. Metals in Waste Foundry Sands and an Evaluation of Their Leaching and Transport to Groundwater. Water Air Soil Pollut 225, 1963 (2014). https://doi.org/10.1007/s11270-014-1963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1963-4

Keywords

Navigation