Skip to main content
Log in

The Impact of Wastewater Treatment Effluent on the Biogeochemistry of the Enoree River, South Carolina, During Drought Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Drought conditions should magnify the effect of wastewater treatment plant (WWTP) effluent on river biogeochemistry. This study examined the impact of WWTP effluent on the Enoree River in the piedmont region of South Carolina during a period of significant drought. The Enoree River lacks impoundments, upstream agricultural runoff, and significant industrial point sources, so the single most important human influence on river chemistry is WWTP effluent. Water samples were collected from 28 locations on the Enoree River, 13 of its tributaries, and the effluent of four WWTPs. Effluent from the WWTP furthest upstream increased the salinity of the river and temporal variation and concentrations of most ions, especially nitrate, phosphate, sulfate, sodium, and chloride. The upstream WWTP set the downstream chemical composition of the river, with increasing proportions of chloride, sodium, and sulfate and decreasing proportions of dissolved silicon and bicarbonate. Downstream WWTPs had little or no impact on the chemical composition of the river. Mixing model results show that dilution was the dominant process of the downstream decrease in solute concentrations, but in-channel uptake mechanisms also contributed to declines in concentrations of nitrate, phosphate, and carbon dioxide. Despite dilution and uptake, the chemical signature of WWTP effluent was still evident 135 km downstream. These results lead to a better understanding of the effects of WWTP effluent on the biogeochemistry of rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Admiraal, W., Breugem, P., Jacobs, D. M. L. H. A., & de Ruyter Van Steveninck, E. D. (1990). Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms. Biogeochemistry, 9, 175–185.

    Article  CAS  Google Scholar 

  • Andersen, C. B. (2001). The problem of sample contamination in a fluvial geochemistry research experience for undergraduates. Journal of Geoscience Education, 49, 351–357.

    Google Scholar 

  • Andersen, C. B. (2002). Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems. Journal of Geoscience Education, 50, 389–403.

    Google Scholar 

  • Andersen, C. B., Sargent, K. A., Wheeler, J. F., & Wheeler, S. K. (2001). Fluvial geochemistry of selected tributary watersheds in the Enoree River Basin, northwestern South Carolina. South Carolina Geology, 43, 57–71.

    Google Scholar 

  • Andersen, C. B., Lewis, G. P., & Sargent, K. A. (2004). Influence of wastewater treatment effluent on concentrations and fluxes of solutes in the Bush River, South Carolina, during extreme drought conditions. Environmental Geosciences, 11, 28–41.

    Article  Google Scholar 

  • Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Simone, R., et al. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9, 53–60.

    Article  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1996). Global environment: Water, air, and geochemical cycles. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Bowes, M. J., Smith, J. T., Neal, C., Leach, D. V., Scarlett, P. M., Wickham, H. D., et al. (2011). Changes in water quality of the River Frome (UK) from 1965 to 2009: Is phosphorus mitigation finally working? Science of the Total Environment, 409, 3418–3430.

    Article  CAS  Google Scholar 

  • Butler, J. R., & Secor, D. T., Jr. (1991). The Central Piedmont. In J. W. Horton Jr. & V. A. Zullo (Eds.), The geology of the Carolinas (pp. 59–78). Knoxville: The University of Tennessee Press.

    Google Scholar 

  • Camp, W. (1975). Soil survey of Greenville County, SC. Washington, D.C.: United States Department of Agriculture Soil Conservation Service.

    Google Scholar 

  • Carey, R. O., & Migliaccio, K. W. (2009). Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environmental Management, 44, 205–217.

    Article  Google Scholar 

  • Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171–184.

    Article  CAS  Google Scholar 

  • Correll, D. L., Jordan, T. E., & Weller, D. E. (2000). Beaver pond biogeochemical effects in the Maryland coastal plain. Biogeochemistry, 49, 217–239.

    Article  CAS  Google Scholar 

  • Dynesius, M., & Nilsson, C. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266, 753–762.

    Article  CAS  Google Scholar 

  • Flintrop, C., Hohlmann, B., Jasper, T., Korte, C., Podlaha, O. G., Scheele, S., et al. (1996). Anatomy of pollution: Rivers of North Rhine-Westphalia, Germany. American Journal of Science, 296, 58–98.

    Article  CAS  Google Scholar 

  • Forshay, K. J., & Stanley, E. H. (2005). Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry, 75, 43–64.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood: Prentice-Hall.

    Google Scholar 

  • Froelich, P. N. (1988). Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnology and Oceanography, 33, 649–668.

    Article  CAS  Google Scholar 

  • Goherman, H. L., & Meyer, M. L. (1985). The geochemistry of two hard water rivers: The Rhine and the Rhone. Part 2: The apparent solubility of calcium carbonate. Hydrobiologia, 126, 11–19.

    Article  Google Scholar 

  • Goolsby, D. A. (2000). Mississippi basin nitrogen flux believed to cause Gulf hypoxia. Eos, 81, 321–327.

    Article  Google Scholar 

  • Green, M., Arroyo, K., Lewis, G. P., Andersen, C. B., & Wheeler, S. (2005). Natural attenuation of nutrients by wetlands in the Bush River, South Carolina. Geological Society of America Abstracts With Programs, 37, 44.

    Google Scholar 

  • Grimaldi, C., & Chaplot, V. (2000). Nitrate depletion during within-stream transport: Effects of exchange processes between streamwater, the hyporheic and riparian zones. Water, Air, and Soil Pollution, 124, 95–112.

    Article  CAS  Google Scholar 

  • Haggard, B. E., Stanley, E. H., & Storm, D. E. (2005). Nutrient retention in a point-source-enriched stream. Journal of the North American Benthological Society, 24, 29–47.

    Article  Google Scholar 

  • Hall, R. O., Jr. (2003). A stream's role in watershed nutrient export. Proceedings of the National Academy of Sciences, 100, 10137–10138.

    Article  CAS  Google Scholar 

  • Hill, A. R., Labadia, C. F., & Sanmugadas, K. (1998). Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry, 42, 285–310.

    Article  CAS  Google Scholar 

  • Hinkle, S. R., Duff, J. H., Triska, F. J., Laenen, A., Gates, E. B., Bencala, K. E., et al. (2001). Linking hyporheic flow and nitrogen cycling near the Willamette River—a large river in Oregon, USA. Journal of Hydrology, 244, 157–180.

    Article  CAS  Google Scholar 

  • Horton, J. W., Jr., & McConnell, K. I. (1991). The Western Piedmont. In J. W. Horton Jr. & V. A. Zullo (Eds.), The geology of the Carolinas (pp. 79–92). Knoxville: The University of Tennessee Press.

    Google Scholar 

  • Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., et al. (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35, 75–139.

    Article  CAS  Google Scholar 

  • Huh, Y., Tsoi, M.-Y., Zaitsev, A., & Edmond, J. M. (1998). The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochimica et Cosmochimica Acta, 62, 1657–1676.

    Article  CAS  Google Scholar 

  • Humborg, C., Conley, D. J., Rahm, L., Wulff, F., Cociasu, A., & Ittekkot, V. (2000). Silicon retention in river basins: Far-reaching effects of biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50.

    Article  Google Scholar 

  • Humborg, C., Blomqvist, S., Avsan, E., Bergensund, Y., Smedberg, E., Brink, J., et al. (2002). Hydrological alterations with river damming in northern Sweden: Implications for weathering and river biogeochemistry. Global Biogeochemical Cycles, 16, 12-1–12-13.

    Article  Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Scott, J. T., Haggard, B. E., Bowes, M. J., & Massey, L. B. (2012). Within-river phosphorus retention: Accounting for a missing piece in the watershed phosphorus puzzle. Environmental Science and Technology, 46, 13284–13292.

    Article  CAS  Google Scholar 

  • Johnson, G. C., & Treece, M. W. (1998). Phosphorus in streams in the Upper Tennessee Basin, 1970–1993. U.S.G.S. Open-Files Report, 98–532, 1–6.

    Google Scholar 

  • Johnston, C. A., Bridgham, S. D., & Schubauer-Berigan, J. P. (2001). Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Science Society of America Journal, 65, 557–577.

    Article  CAS  Google Scholar 

  • Kim, J. P., Reid, M. R., Cunninghame, R. G., & Hunter, K. A. (1996). Aqueous chemistry of major ions and trace metals in the Clutha River, New Zealand. Marine & Freshwater Research, 47, 918–929.

    Article  Google Scholar 

  • Lewis, G. P., Mitchell, J., Andersen, C. B., Haney, D., Liao, M. K., & Sargent, K. A. (2007). Urban influences on stream chemistry and biology in the Big Brushy Creek watershed, South Carolina. Water, Air, and Soil Pollution, 182, 303–323.

    Article  CAS  Google Scholar 

  • Marti, E., Aumatell, J., Godé, L., Poch, M., & Sabater, F. (2004). Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. Journal of Environmental Quality, 33, 285–293.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1980). Pathways of major elements from land to ocean through rivers. In J. M. Martin, J. D. Burton, & D. Eisma (Eds.), Proceedings of the Review and Workshop on River Inputs to Ocean Systems (pp. 18–30). Rome: FAO.

    Google Scholar 

  • Meybeck, M. (1998). Man and river interface: Multiple impacts on water and particulates chemistry illustrated in the Seine River basin. Hydrobiologia, 373/374, 1–20.

    Article  CAS  Google Scholar 

  • Moreau, S., Bertru, G., & Buson, C. (1998). Seasonal and spatial trends of nitrogen and phosphorous loads to the upper catchment of the river Vilaine (Brittany): Relationships with land use. Hydrobiologia, 373/374, 247–258.

    Article  Google Scholar 

  • Muthukrishnan, S., Lewis, G. P., & Andersen, C. B. (2007). Chapter 24. Relations among land cover, vegetation index, and nitrate concentrations in streams of the Enoree River Basin, piedmont region of South Carolina, USA. In D. Sarkar, R. Datta, & R. Hannigan (Eds.), Concepts and applications in environmental geochemistry (pp. 515–539). New York: Elsevier.

    Chapter  Google Scholar 

  • National Weather Service (2007) Detailed climate information for Greenville-Spartanburg Airport. Retrieved December 14, 2007, from http://www.erh.noaa.gov/gsp/climate/gsppcp.htm. Accessed December 2007.

  • Neal, C., House, A. W., Jarvie, H. P., & Eatherall, A. (1998). The significance of dissolved carbon dioxide in major lowland rivers entering the North Sea. Science of the Total Environment, 210(211), 187–203.

    Article  Google Scholar 

  • Neal, C., Jarvie, H. P., Neal, M., Love, A. J., Hill, L., & Wickham, H. (2005). Water quality of treated sewage effluent in a rural area of the upper Thames basin, southern England, and the impacts of such effluents on riverine phosphorus concentrations. Journal of Hydrology, 304, 103–117.

    Article  CAS  Google Scholar 

  • Neal, C., Neal, M., Hill, L., & Wickham, H. (2006). The water quality of the River Thames in the Thames Basin of south/south-eastern England. Science of the Total Environment, 360, 254–271.

    Article  CAS  Google Scholar 

  • Palmer-Felgate, E. J., Jarvie, H. P., Williams, R. J., Mortimer, R. J. G., Loewenthal, M., & Neal, C. (2008). Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. Journal of Hydrology, 351, 87–97.

    Article  CAS  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Reviews of Ecology and Systematics, 32, 333–365.

    Article  Google Scholar 

  • Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292, 86–90.

    Article  CAS  Google Scholar 

  • Piñol, J., & Avila, A. (1992). Streamwater pH, alkalinity, pCO2 and discharge relationships in some forested Mediterranean catchments. Journal of Hydrology, 131, 205–225.

    Article  Google Scholar 

  • Plummer, L. N., & Busenbeck, E. (1982). The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0–90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochimica Cosmochimica Acta, 46, 1011–1040.

    Article  CAS  Google Scholar 

  • Raymond, P. A., Oh, N.-H., Turner, R. E., & Broussard, W. (2008). Anthropogenically enhanced fluxes of water and carbon in the Mississippi River. Nature, 451, 449–452.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Kadlec, R. H., & Flaig, E. (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29, 83–146.

    Article  CAS  Google Scholar 

  • Roy, S., Gaillardet, J., & Allegre, C. J. (1999). Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63, 1277–1292.

    Article  CAS  Google Scholar 

  • Saunders, D. L., & Kalff, J. (2001). Nitrogen retention in wetlands, lakes, and rivers. Hydrobiologia, 443, 205–2112.

    Article  CAS  Google Scholar 

  • Scott, S., Andersen, C. B., Sargent, K. A., Lewis, G. P., & Wheeler, S. (2004). The chemical composition of wastewater treatment plant effluent in Upstate South Carolina. Geological Society of America Abstracts with Programs, 36, 125.

    Google Scholar 

  • Seitzinger, S. P., Styles, R. V., Boyer, E. W., Alexander, R. B., Billen, G., Howarth, R. W., et al. (2002). Nitrogen retention in rivers: Model development and application to watersheds in the northeastern U.S.A. Biogeochemistry, 57(58), 199–237.

    Article  Google Scholar 

  • South Carolina Department of Health and Environmental Control (SCDHEC). (2001). Water quality assessment: Broad River Basin. Technical Report 001-01. Columbia: Bureau of Water.

    Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research C, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63, 923–938.

    Article  Google Scholar 

  • Stutter, M. I., Demars, B. O. L., & Langan, S. J. (2010). River phosphorus cycling: Separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Water Research, 44, 4425–4436.

    Article  CAS  Google Scholar 

  • Thibert, S. (1984). Exportations naturelles et anthropiques des ions majeurs et des elements nutritifs dans la basin de la Seine. Ph.D. thesis, University of Paris 6, France.

  • Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., & Bencala, K. E. (1989). Retention and transport of nutrients in a third-order stream: Channel processes. Ecology, 70, 1877–1892.

    Article  Google Scholar 

  • United States Geological Survey (USGS) (2004). National Water Information System. Retrieved February 15 2004 from http://waterdata.usgs.gov/nwis/. Accessed February 2004.

  • United States Geological Survey (USGS) (2014). USGS 02160325 Brushy Creek Near Greenville, SC. Retrieved March 1 2014 from http://waterdata.usgs.gov/nwis/uv?02160325. Accessed March 2014.

  • Venterink, H. O., Wiegman, F., Van der Lee, G. E. M., & Vermaat, J. E. (2003). Role of active floodplains for nutrient retention in the River Rhine. Journal of Environmental Quality, 32, 1430–1435.

    Article  CAS  Google Scholar 

  • Verbanck, M., Vanderborght, J.-P., & Wollast, R. (1989). Major ion content of urban wastewater: Assessment of per capita loading. Research Journal of the Water Pollution Control Federation, 61, 1722–1728.

    CAS  Google Scholar 

  • Vörösmarty, C. J., Sharma, K. P., Fekete, B. M., Copeland, A. H., Holden, J., Marble, J., et al. (1997). The storage and aging of continental runoff in large reservoir systems of the world. Ambio, 26, 210–219.

    Google Scholar 

  • Whitmire, S. L., & Hamilton, S. K. (2005). Rapid removal of nitrate and sulfate in freshwater wetland sediments. Journal of Environmental Quality, 34, 2062–2071.

    Article  CAS  Google Scholar 

  • Withers, P. J. A., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: A review. Science of the Total Environment, 400, 379–395.

    Article  CAS  Google Scholar 

  • Zhiliang, S., Qun, L., Shumel, Z., Hui, M., & Ping, Z. (2003). A nitrogen budget of the Changjiang River catchment. Ambio, 32, 65–69.

    Article  Google Scholar 

  • Zhu, Z., Deng, Q., Zhou, H., Ouyang, T., Kuang, Y., Huang, N., et al. (2002). Water pollution and degradation in Pearl River Delta, South China. Ambio, 31, 226–257.

    Article  Google Scholar 

Download references

Acknowledgement

We thank the two anonymous reviewers that provided comments that substantially improved this paper. We thank the members of the 1999 and 2000 River Basin Research Initiative Research Experiences for Undergraduates (REU) program for the help with collecting and analyzing samples. We also thank John and Sandy Wheeler of the Department of Chemistry at Furman University for helping with ion chromatography and ICP-AES analyses. Suresh Muthukrishnan of the Department of Earth and Environmental Sciences Department at Furman provided the location map. The South Carolina Department of Health and Environmental Control provided data regarding WWTP effluent discharge. Western Carolina Sewer Authority (now Renewable Water Resources) generously allowed us to collect samples of WWTP effluent. This study was funded by NSF-REU grant #EAR-9820605, South Carolina DHEC NPS Program grant #EQ-9-461, a grant from the Associated Colleges of the South, and Furman University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brannon Andersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, C.B., Lewis, G.P., Hart, M. et al. The Impact of Wastewater Treatment Effluent on the Biogeochemistry of the Enoree River, South Carolina, During Drought Conditions. Water Air Soil Pollut 225, 1955 (2014). https://doi.org/10.1007/s11270-014-1955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1955-4

Keywords

Navigation