Skip to main content
Log in

A Novel Autotrophic Bacterium Isolated from an Engineered Wetland System Links Nitrate-Coupled Iron Oxidation to the Removal of As, Zn and S

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A neutrophilic, autotrophic bacterium that couples iron oxidation to nitrate reduction (iron-oxidizing bacteria [IOB]) under anoxic conditions was isolated from a working bioremediation site in Trail, British Columbia. The site was designed and developed primarily to treat high concentrations of Zn and As that originate from capped industrial landfill sites. The system consisted of two upflow biochemical reactor cells (BCR) followed by three vegetated wetland polishing cells with sub-surface flow and a holding pond. During a 5-year period (2003–2007), the system treated more than 19,100 m3 of contaminated water, removing and sequestering more than 10,700 kg of As, Zn and sulfate at average input water concentrations of: As, 58.6 mg l−1 (±39.9 mg l−1); Zn, 51.9 mg l−1 (±35.4 mg l−1) and SO4 2−, 781.5 mg l−1 (±287.8 mg l−1). The bacterium was isolated in order to better understand the mechanisms underlying the consistent As removal that took place in the system. Analysis using Basic Local Alignment Search Tool (BLAST) database showed that the closest homologies are to Candidatus accumulibacterphosphatis (95 % homology), Dechloromonas aromatica (94 %), and Sideroxydans lithotrophicus ES-1 (92 %) Within the BCR cells, the IOB oxidized Fe2+ generated by iron-reducing bacteria (IRB); the source of the iron was most likely biosolids and coatings of iron oxide on locally available sand used in the matrix. We have provisionally designated the novel bacterium as TR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benner, S. G., Gould, W. D., & Blowes, D. W. (2000). Microbial populations associated with the generation and treatment of acid mine drainage. Chemical Geology, 169, 435–448.

    Article  CAS  Google Scholar 

  • Benz, M., Brune, A., & Schink, B. (1998). Anaerobic and aerobic oxidation of ferrous iron at neutral pH, by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology, 169, 159–165.

    Article  CAS  Google Scholar 

  • Blake, R., II, & Johnson, D. B. (2000). Phylogenetic and biochemical diversity among acidophilic bacteria that respire iron. In D. R. Lovley (Ed.), Environmental microbe–metal Interactions. Washington, DC: ASM Press.

    Google Scholar 

  • Brock, T. D., Madigan, M. T., Martinko, J. M., & Parker, J. (1994). Biology of microorganisms. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Caldwell, M. E., Tanner, R. S., & Suflita, J. M. (1999). Microbial metabolism of benzene and the oxidation of ferrous iron under anaerobic conditions: implications for bioremediation. Anaerobe, 5, 595–603.

    Article  CAS  Google Scholar 

  • Canfield, D. E. (1989). Reactive iron in marine sediments. Geochimica et CosmochimicaActa, 53, 619–632.

    Article  CAS  Google Scholar 

  • Cervantes, C., Ji, G., Ramirez, J. L., & Silver, S. (1994). Resistance to arsenic in microorganisms. FEMS Microbiology Review, 15, 355–367.

    Article  CAS  Google Scholar 

  • Chadhuri, S. K., Lack, J. G., & Coates, J. D. (2001). Biogenic magnetite formation through anaerobic oxidation of Fe(II). Applied and Environmental Microbiology, 67(6), 2844–2848.

    Article  Google Scholar 

  • Chan, C. S., De Stasio, G. S., Welch, S. A., Girasole, M., Frazer, B. H., Nesterov, M. V., et al. (2004). Microbial polysaccharides template assembly of nanocrystal fibers. Science, 303, 1656–1658.

    Article  CAS  Google Scholar 

  • Chapelle, F. H. (1993). Ground-water microbiology and geochemistry. New York: John Wiley and Sons.

    Google Scholar 

  • Cochran, W. G. (1950). Estimation of bacterial densities by means of the most probable number. Biometrics, 6, 105–116.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (1996). The iron oxides. New York: John Wiley and Son.

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials, 40, 308–315.

    Article  Google Scholar 

  • Dowdle, P. R., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Applied and Environmental Microbiology, 62(5), 1664–1669.

    CAS  Google Scholar 

  • Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P., & Luther, G. W., III. (2008). Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochimica et Cosmochimica Acta, 72(14), 3358–3370.

    Article  CAS  Google Scholar 

  • Edwards, K. J., Gihring, T. M., & Banfield, J. F. (1999). Seasonal variations in microbial populations and environmental conditions at an extreme acid mine drainage environment. Applied and Environmental Microbiology, 65, 3627–3632.

    CAS  Google Scholar 

  • Edwards, K. J., Rogers, D. R., Wirsen, C. O., & McCollom, T. M. (2003). Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α and γ-Proteobacteria from the Deep Sea. Applied and Environmental Microbiology, 69, 2906–2913.

    Article  CAS  Google Scholar 

  • Ehrenreich, A., & Widdel, F. (1994). Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 60, 4517–4526.

    CAS  Google Scholar 

  • Emerson, D., & Moyer, C. (1997). Isolation and characterization of novel iron oxidizing bacteria that grow at circumneutral pH. Applied and Environmental Microbiology, 63, 4784–4792.

    CAS  Google Scholar 

  • Emerson, D., & Revsbech, N. P. (1994). Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Applied and Environmental Microbiology, 60, 4022–4031.

    CAS  Google Scholar 

  • Emerson, D., & Weiss, J. V. (2004). Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiology Journal, 21, 405–414.

    Article  CAS  Google Scholar 

  • Emerson, D., Weiss, J. V., & Megonigal, J. P. (1999). Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Applied and Environmental Biology, 65(6), 2758–2761.

    CAS  Google Scholar 

  • Finneran, K. T., Housewright, M. E., & Lovley, D. R. (2002). Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environmental Microbiology, 4, 510–516.

    Article  CAS  Google Scholar 

  • French, S., Puddephatt, D., Habash, M., & Glasauer, S. (2012). The dynamic nature of bacterial surfaces: implications for metal–membrane interaction. Critical Reviews in Microbiology. doi:10.3109/1040841X.2012.702098. early publication online.

  • Gallegos-Garcia, M., Ramírez-Muñiz, K., & Song, S. (2012). Arsenic removal from water by adsorption using iron oxide minerals as adsorbents: a review. Mineral Processing and Extractive Metallurgy Review, 33, 301–315.

    Article  CAS  Google Scholar 

  • Glasauer, S., Weidler, P. G., Langley, S., & Beveridge, T. J. (2003). Controls on Fe reduction and mineral formation by a sub-surface bacterium. Geochimica et Cosmochimica Acta, 67, 1277–1288.

    Article  CAS  Google Scholar 

  • Glasauer, S., Mattes, A., & Gehring, A. U. (in press). Constraints on the preservation of ferriferous microfossils. Geomicrobiology Journal.

  • Gorby, Y. A., & 23 co-authors (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Science, 103, 11358–11363.

    Google Scholar 

  • Gould, W. D., Stichbury, M., Francis, M., Lortie, L., & Blowes, D. W. (2003). An MPN method for the enumeration of iron-reducing bacteria. In G. Spiers, P. Beckett, H. Conroy (Eds.), Mining and the Environment III Conference, Sudbury. Sudbury: Laurentian University.

  • Gusek, J., & Wildeman, T. (1997). Short course # 6: “Treatment of Acid Mine Drainage”, Fourth International Conference on Acid Rock Drainage, Vancouver, BC, May 31–June 6, 1997.

  • Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Roßnagel, P., Burggraf, S., et al. (1996). Ferroglobusplacidus gen. nov., sp., a novel hyperthermophilic archaeum that oxidizes Fe(II) at neutral pH under anoxic conditions. Archives of Microbiology, 166, 308–314.

    Article  CAS  Google Scholar 

  • Hansel, C. M., Benner, S. G., Neiss, J., Dohnalkova, A., Kukkadapu, R. K., & Fendorf, S. (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67, 2977–2992.

    Article  CAS  Google Scholar 

  • Hauck, S., Benz, M., Brune, A., & Schink, B. (2001). Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance). FEMS-Microbiology, 37, 127–134.

    Article  CAS  Google Scholar 

  • He, J., Xu, Z., & Hughes, J. (2005). Pre-lysis washing improves DNA extraction from a forest soil. Soil Biology and Biochemistry, 37, 2337–2341.

    Article  CAS  Google Scholar 

  • Hua, X., Dong, D., Liu, L., Gao, M., & Lian, D. (2012). Comparison of trace metal adsorption onto different solid materials and their chemical components in a natural aquatic environment. Applied Geochemistry, 27, 1005–1012.

    Article  CAS  Google Scholar 

  • Hulshof, A. H. M., Blowes, D. W., Ptacek, C. J., & Gould, D. (2003). Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent. Environmental Science and Technology, 37, 5027–5033.

    Article  CAS  Google Scholar 

  • Hunter, R. C., & Beveridge, T. J. (2005). Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 71, 2501–2510.

    Article  CAS  Google Scholar 

  • Johnson, D. B., Stallwood, B., Kimura, S., & Hallberg, K. B. (2006). Isolation and characterization of Acidicaldus organivorus, gen. nov., sp nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Archives of Microbiology, 185, 212–221.

    Article  CAS  Google Scholar 

  • Kappler, A., Schink, B., & Newman, D. K. (2005). Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology, 3, 235–245.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I., & Zouboulis, A. I. (2006). Use of iron- and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater. Water Quality Research Journal, 41, 117–129.

    CAS  Google Scholar 

  • Kumaraswamy, R., Sjollema, K., Kuenen, G., van Loosdrecht, M., & Muyzer, G. (2006). Nitrate-dependent [Fe(II)EDTA]2− oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Systematic and Applied Microbiology, 29, 276–286.

    Article  CAS  Google Scholar 

  • Lack, J. D., Chadhuri, S. K., Chakraborty, R., Achenbach, L. A., & Coates, J. D. (2002). Anaerobic biooxidation of Fe(II) by Dechloromonas suillam. Microbial Ecology, 43, 424–431.

    Article  CAS  Google Scholar 

  • Lovely, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiology Reviews, 55, 259–287.

    Google Scholar 

  • Lovley, D. R., & Phillips, E. J. B. (1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51, 683–689.

    CAS  Google Scholar 

  • Madigan, M. T., Martinko, J. M., & Parker, J. (2003). Biology of microorganisms (10th ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Mattes, A. G., Duncan, W. F. A., Gould, W. D., Evans, L., & Glasauer, S. (2011). The long term operation of a biologically based treatment system that removes As, S and Zn from industrial (smelter operation) landfill seepage. Applied Geochemistry, 26, 1886–1896.

    Article  Google Scholar 

  • Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernhard, S., Obst, M., et al. (2009). Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta, 71, 696–711.

    Article  Google Scholar 

  • Miyauchi, R., Oki, K., Aoi, Y., & Tsuneda, S. (2007). Diversity of nitrite reductase genes in “Candidatus Accumulibacter phosphatis”-dominated cultures enriched by flow-cytometric sorting. Applied and Environmental Microbiology, 73(16), 5331–5337.

    Article  CAS  Google Scholar 

  • Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. R., et al. (1997). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Archives of Microbiology, 168, 380–388.

    Article  CAS  Google Scholar 

  • Nielson, J. L., & Nielson, P. H. (1998). Microbial nitrate-dependent oxidation of ferrous iron in activated sludge. Environmental Science and Technology, 32(3556), 3561.

    Google Scholar 

  • Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbial Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  • Nies, D. H. (2007). Bacterial transition metal homeostasis. In D. H. Nies & S. Silver (Eds.) Molecular microbiology of heavy metals (pp. 117–142). Microbiology Monographs, 6. Berlin, Heidelberg, New York: Springer Publications.

  • Nies, D. H., & Silver, S. (1995). Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology, 14, 186–199.

    Google Scholar 

  • Postgate, J. R. (1983). The sulphate reducing bacteria (2nd ed.). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Prescott, L. M., Harley, J. P., & Klein, D. A. (2002). Microbiology (5th ed.). Boston, MA: McGraw-Hill.

    Google Scholar 

  • Raab, A., & Feldman, J. (2003). Microbial transformations of metals and metalloids. Science Progress, 86(3), 179–202.

    Article  CAS  Google Scholar 

  • Roden, E. E., Sobolev, D., Glazer, B., & Luther, G. W., III. (2004). Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiology Journal, 21, 379–391.

    Article  CAS  Google Scholar 

  • Schädler, S., Burkhardt, C., Heglera, F., Straub, K. L., Miot, J., Benzerara, K., et al. (2009). Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiology Journal, 26, 93–103.

    Article  Google Scholar 

  • Senko, J. M., Dewers, T. A., & Krumholz, L. R. (2005). Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation. Applied and Environmental Microbiology, 71(11), 7172–7177.

    Article  CAS  Google Scholar 

  • Senn, D. B., & Hemond, H. F. (2002). Nitrate controls on iron and arsenic in an urban lake. Science, 296, 2373–2376.

    Article  CAS  Google Scholar 

  • Shelobolina, E. S., Van Praagh, C. G., & Lovley, D. R. (2003). Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiology Journal, 20, 123–146.

    Article  Google Scholar 

  • Sobolov, D., & Roden, E. E. (2002). Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Antonie Van Leeuwenhoek, 81, 587–597.

    Article  Google Scholar 

  • Sobolov, D., & Roden, E. E. (2004). Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-proteobacterium from freshwater wetland sediments. Geomicrobiology Journal, 21, 1–10.

    Article  Google Scholar 

  • Straub, K. L., & Buchholz-Cleven, B. E. E. (1998). Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology, 64, 4846–4856.

    CAS  Google Scholar 

  • Straub, K. L., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62, 1458–1460.

    CAS  Google Scholar 

  • Straub, K. L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34, 181–186.

    Article  CAS  Google Scholar 

  • Straub, K. L., Schonhuber, W. A., Buchholz-Cleven, B. E. E., & Schink, B. (2004). Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiology Journal, 21, 371–378.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software, version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Tsail, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659–667.

    Article  Google Scholar 

  • Turpeinen, R. (2002). Interactions between metals, microbes and plants – bioremediation of arsenic and lead contaminated soils, PhD dissertation. Department of Ecological and Environmental Sciences, University of Helsinki.

  • Urrutia, M., Kemper, M., Doyle, R., & Beveridge, T. J. (1992). The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Applied and Environmental Microbiology, 58, 3837–3844.

    Google Scholar 

  • Vodyanitskii, Y. N., & Yakovlev, A. S. (2011). Assessment of soil contamination by the content of heavy metals in the soil profile. Eurasian Soil Science, 44, 297–303.

    Article  CAS  Google Scholar 

  • Weber, K. A., Pollock, J., Cole, K. A., O’Connor, S. M., Achenbach, L. A., & Coates, J. D. (2002). Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Applied and Environmental Microbiology, 72, 686–694.

    Article  Google Scholar 

  • Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews, 4, 752–763.

    Article  CAS  Google Scholar 

  • Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Ontario Centres of Excellence Program, which generously funded this work. We also acknowledge the support of several industry partners: Teck Metals Limited, NatureWorks and Stantec. Assistance and advice from Kamini Khosla and Kari Dunfield (University of Guelph) for the molecular genetic studies is appreciated. We thank Dianne Moyles, Bob Harris and the late Terry Beveridge for assistance with TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Glasauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattes, A., Gould, D., Taupp, M. et al. A Novel Autotrophic Bacterium Isolated from an Engineered Wetland System Links Nitrate-Coupled Iron Oxidation to the Removal of As, Zn and S. Water Air Soil Pollut 224, 1490 (2013). https://doi.org/10.1007/s11270-013-1490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1490-8

Keywords

Navigation