Skip to main content

Advertisement

Log in

Short- and Long-Term Effects of Modified Humic Substances on Soil Evolution and Plant Growth in Gold Mine Tailings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mining creates large amounts of processed waste in the form of mine tailings. Sulfide mine tailings are of particular concern due to the biotic and abiotic oxidation of sulfide minerals that release acidity and metals into the environment. Revegetation can be employed to mitigate the spread of tailings in the environment. Revegetation often involves ameliorating tailings with organic materials to promote plant growth and improve tailings physicochemical structure. We amended plots in the Central Manitoba Mine tailings pond with humic substances applied at rates up to 4 g C kg−1 through roto-tilling and seeded with Medicago sativa and Elymus trachycaulus in 2003 and 2004. The humic substances improved tailings fertility by increasing macro aggregation, organic carbon, and macronutrients but also resulted in a short-term increase in electrical conductivity levels. In the first growing season the humic amendment had little effect on plant yield, except in the 2003 experiment where the yield of E. trachycaulus decreased by 84 % with 4 g C kg−1 amendment. After 7 years, the addition of humic amendment resulted in a cover of over 38 % for M. sativa, compared to less than 2 % in control plots. In addition, non-seeded species cover increased with amendment rate in the 2003 experiment but not the 2004 experiment, most likely due to lower pH in the latter. Our results suggest that short-term patterns of plant performance do not reflect longer-term performance or invasion by volunteer plant species. Our long-term data suggest that humic amendments can be effective in establishing plant invasion of mine tailings, although the effects vary depending on the pH of the tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • [SPAC] Soil and Plant Analysis Council Inc. (1999). Soil analysis: handbook of reference methods. Florida: St. Lucie Press.

    Google Scholar 

  • Angers, D. A., & Mehuys, G. R. (1993). Aggregate stability to water. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 651–657). Florida: Lewis Publishers.

    Google Scholar 

  • Ayuso, M., Moreno, J. L., Hernandez, T., & Garcia, C. (1996). Effect of humic fractions from urban wastes and other more evolved organic materials on seed germination. Journal of the Science of Food and Agriculture, 72, 461–468.

    Article  CAS  Google Scholar 

  • Ayuso, M., Hernandez, T., Garcia, C., & Pascual, J. A. (1996). Stimulation of barely growth and nutrient absorption by humic substances originating from various organic materials. Biosource Technology, 57, 251–257.

    Article  CAS  Google Scholar 

  • Ayuso, M., Moreno, J. L., Hernandez, T., & Garcia, C. (1997). Characterization and evaluation of humic acids from urban waste as liquid fertilizers. Journal of the Science of Food and Agriculture, 75, 481–488.

    Article  CAS  Google Scholar 

  • Bagatto, G., & Shorthouse, J. D. (1999). Biotic and abiotic characteristics of ecosystems on acid metalliferous mine tailings near Sudbury, Ontario. Canadian Journal of Botany, 77, 410–425.

    Google Scholar 

  • Blake, G. R. (1965). Bulk density. In C.A. Black (Ed.), Methods of soil analysis, part I: Am. Soc. Agron. Monograph 9, 374–390. WT: Madison.

  • Blowes, D. W., & Ptacek, C. J. (1994). Acid-neutralisation in inactive mine tailings. In J. L. Jambor & D. W. Blowes (Eds.), Short course handbook on the environmental geochemistry of sulfide mine-wastes (pp. 271–292). Ontario: Mineralogical Association of Canada.

    Google Scholar 

  • Bourret, M. M., Brummer, J. E., & Leininger, W. C. (2009). Establishment and growth of two willow species in a riparian zone impacted by mine tailings. Journal of Environmental Quality, 38, 693–701.

    Article  CAS  Google Scholar 

  • Bukvova, M., & Tichy, V. (1967). The effect of humus fractions on the phosphorylase activity of wheat (Triticum aestivum L.). Biologia Plantarium, 9, 401–406.

    Article  CAS  Google Scholar 

  • Chen, Y., & Aviad, T. (1990). Effects of humic substances on plant growth. In P. McCarthy, C. E. Clapp, R. L. Malcolm, & P. R. Bloom (Eds.), Humic substances in soil and crop sciences (pp. 161–181). Wisconsin: Soil Science Society of America Inc.

    Google Scholar 

  • Dormaar, J. F. (1975). Effects of humic substances from chernozemic Ah horizons on nutrient uptake by Phaseolus vulgaris and Festuca scabrella. Canadian Journal of Soil Science, 55, 111–118.

    Article  CAS  Google Scholar 

  • Foth, H. D., & Ellis, B. G. (1997). Soil Fertility (2nd ed.). Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  • Gardner, W. C., Naeth, M. A., Broersma, K., Chanasyk, D. S., & Jobson, A. M. (2012). Influence of biosolids and fertilizer amendments on element concentrations and revegetation of copper mine tailings. Canadian Journal of Soil Science, 92, 89–102.

    Article  CAS  Google Scholar 

  • Green, S., & Renault, S. (2008). Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: a greenhouse study. Environmental Pollution, 151, 524–531.

    Article  CAS  Google Scholar 

  • Greger, M. (1999). Metal availability and bioconcentration in plants. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metals stress in plants: From molecules to ecosystems (pp. 1–27). Germany: Springer Verlag.

    Chapter  Google Scholar 

  • Ibrahim, S. M., & Goh, T. B. (2004). Changes in macroaggregation and associated characteristics in mine tailings amended with humic substances. Communications in Soil Science and Plant Analysis, 35, 1905–1922.

    Article  CAS  Google Scholar 

  • Johnson, D. B., Dziuria, M. A., Koimert, A., & Hallberg, K. B. (2002). The microbiology of acid mine drainage: genesis and biotreatment. South African Journal of Science, 98, 249–259.

    CAS  Google Scholar 

  • Jones, J. B. (1998). Plant nutrition manual. Washington, D.C.: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  • Kahn, S. A., Mulvaney, R. L., & Hoeft, R. G. (2000). Direct-diffusion methods for inorganic-nitrogen analysis of soil. Soil Science Society of America Journal, 64, 1083–1089.

    Article  Google Scholar 

  • Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis. Canada: Northwest Region Northern Forestry Centre.

    Google Scholar 

  • Kirkman, J. H., Basker, A., Surapaneni, A., & MacGregor, A. N. (1994). Potassium in the soils of New Zealand — a review. New Zealand Journal of Agricultural Research, 37, 207–227.

    Article  CAS  Google Scholar 

  • Lee, Y. S., & Bartlett, R. J. (1976). Stimulation of plant growth by humic substances. Soil Science Society of America Journal, 40, 876–879.

    Article  CAS  Google Scholar 

  • Livens, F. R. (1991). Chemical reactions of metals with humic material. Environmental Pollution, 70, 183–208.

    Article  CAS  Google Scholar 

  • Locascio, S. J. (1993). Cucurbits: Cucumbers, Muskmelon, and Watermelon. In W. F. Bennett (Ed.), Nutrient deficiencies and toxicities in crop plants (pp. 123–130). Minnesota: The American Phytopathological Society.

    Google Scholar 

  • Londry, K. L., & Sherriff, B. L. (2005). Comparison of microbial biomass, biodiversity, and biogeochemistry in three contrasting gold mine tailings deposits. Geomicrobiology Journal, 22, 237–247.

    Article  CAS  Google Scholar 

  • MacCarthy, P. (2001). The principles of humic substances. Soil Science, 166, 738–751.

    Article  CAS  Google Scholar 

  • Maksimiec, W., & Baszynski, K. (1996). Chlorophyll fluorescence in primary leaves of excess Cu-treated runner bean plants depends on their growth stages and duration of Cu-action. Journal of Plant Physiology, 149, 196–201.

    Article  Google Scholar 

  • Mato, M. C., Fabregas, R., & Mendez, J. (1971). Inhibitory effects of soil humic acids on indoleacetic acid oxidase. Soil Biology and Biochemisty, 3, 285–288.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1981). Forms and distribution of copper in solid and solution phases of soil. In J. F. Loneragan, A. D. Robson, & R. D. Graham (Eds.), Copper in soils and plants (pp. 25–42). Australia: Academic Press.

    Google Scholar 

  • McLaughlin, B. E. (1988). The distribution of Agrostis gigantea and Poa pratensis in relation to some environmental factors on a mine-tailings area at Copper Cliff, Ontario. Canadian Journal of Botany, 66, 2317–2322.

    Google Scholar 

  • O’Donnell, R. W. (1973). The auxin like effect of humic preparations from leonardite. Soil Science, 116, 106–112.

    Article  Google Scholar 

  • Pertuit, A. J., Dudley, J. B., & Toler, J. E. (2001). Leonardite and fertilizer levels influence tomato seedling growth. HortScience, 36, 913–915.

    CAS  Google Scholar 

  • Piccolo, A., Celano, G., & Pietramellara, G. (1993). Effects of fractions of coal derived humic substances on seed germination and growth of seedlings (Lactuca sativa and Lycopersicon esculentum). Biology and Fertility of Soils, 16, 11–15.

    Article  CAS  Google Scholar 

  • Piccolo, A., Pietramellara, G., & Mbagwu, J. S. C. (1997). Use of humic substances as soil conditioners to increase aggregate stability. Geoderma, 75, 267–277.

    Article  CAS  Google Scholar 

  • Rauthan, B. S., & Schnitzer, M. (1981). Effects of soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant and Soil, 63, 491–495.

    Article  CAS  Google Scholar 

  • Renault, S., Sailerova, E., & Fedikow, M. A. F. (2002). Phytoremediation of mine tailings and bio-ore production: progress report on seed germination, plant growth and metal accumulation in seedlings planted at Central Manitoba minesite (NTS 52L13). In Manitoba Industry, Trade and Mines, Report of activities 2002 (pp. 255–265). Manitoba: Manitoba Industry, Trade and Mines, Manitoba Geological Survey.

  • Ripley, E. A., Redmann, R. E., & Crowder, A. A. (1996). Environmental effects of mining. Florida: St. Lucie Press.

    Google Scholar 

  • Salzsauler, K. A. (2001). Geochemical and mineralogical investigations of abandoned mine tailings, Central Manitoba mine site. BSc thesis. Manitoba: University of Manitoba.

    Google Scholar 

  • Schnitzer, M., & Khan, S. U. (1978). Soil organic matter. Amsterdam: Elsevier.

    Google Scholar 

  • Scoggan, H. J. (1957). Flora of Manitoba: Bulletin 140. Biological Series 47, (pp. 619). Ottawa: National Museum of Canada.

  • Senkiw, K. A., & Goh, T. B. (2006). Comparison of amendments used to remediate acid mine tailings: environmental and agricultural applications. In D. Langouche, & E. Van Ranst (Eds), New Waves in Physical Land Resources (pp. 39–48). Proceedings of the Workshop for Alumni of the M.Sc. programmes in Soil Science, Eremology and Physical Land Resources 2006, International Centre for Physical Land Resources, Ghent, Belgium.

  • Sherriff, B. L., Ferguson, I. J., Gupton, M. W., VanGulck, J. F., Sidenko, N., Priscu, C., et al. (2009). A geophysical and geotechnical study to determine the hydrogeological regime of the Central Manitoba gold mine tailings deposit. Canadian Geotechnical Journal, 46, 69–80.

    Article  Google Scholar 

  • Shu, W. S., Ye, Z. H., Zhang, Z. Q., Lan, C. Y., & Wong, M. H. (2005). Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restoration Ecology, 13, 49–60.

    Article  Google Scholar 

  • Sinclair, J. B. (1993). Soybeans. In W. F. Bennett (Ed.), Nutrient deficiencies and toxicities in crop plants (pp. 99–104). Minnesota: The American Phytopathological Society.

    Google Scholar 

  • Sladky, Z., & Tichy, V. (1959). Application of humus substances to overground organs of plants. Biologia Plantarum, 1, 9–15.

    Article  Google Scholar 

  • Sorenson, P. T., Quideau, S. A., MacKenzie, M. D., Landhäusser, S. M., & Oh, S. W. (2011). Forest floor development and biochemical properties in reconstructed boreal forest soils. Applied Soil Ecology, 49, 139–147.

    Article  Google Scholar 

  • Stevenson, F. J. (1982). Humus chemistry: genesis, composition, reactions (pp. 17–23). USA: John Wiley & Sons.

    Google Scholar 

  • Sugiyama, S., Ichii, T., Fujisawa, M., Kawashiro, K., Tomida, T., Shigemoto, N., et al. (2003). Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates. Journal of Colloid and Interface Science, 259, 408–410.

    Article  CAS  Google Scholar 

  • Swift, C. E. (1997). Salt tolerance of various temperate zone ornamental plants. Colorado State University. Resource Document. http://www.coopext.colostate.edu/TRA/PLANTS/stable.shtml. Accessed 2007.

  • Swift, R. S. (2001). Sequestration of carbon by soil. Soil Science, 166, 858–871.

    Article  CAS  Google Scholar 

  • Szarek-Łukaszewska, G. (2009). Vegetation of reclaimed and spontaneously vegetated Zn–Pb mine wastes in Southern Poland. Polish Journal of Environmental Studies, 18, 717–733.

    Google Scholar 

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, 219–228.

    Article  CAS  Google Scholar 

  • Vaughan, D. (1969). The stimulation of invertase development in aseptic storage tissue slices by humic acid. Soil Biology and Biochemisty, 1, 15–28.

    Article  CAS  Google Scholar 

  • Vaughan, D., & Malcolm, R. E. (1985). Influence of humic substances on growth and physiological processes. In D. Vaughan, R. E. Malcolm, & M. Nijhoff (Eds.), Soil organic matter and biological activity (pp. 37–75). Netherlands: Dr. Junk Publishers.

    Chapter  Google Scholar 

  • Wang, J., Zhang, C. B., Ke, S. S., & Qian, B. Y. (2011). Different spontaneous plant communities in Sanmen Pb/Zn mine tailing and their effects on mine tailing physico-chemical properties. Environmental Earth Sciences, 62, 779–786.

    Article  CAS  Google Scholar 

  • Whiteley, G. M. (1993). Effects of colloidal lignite on the stability of soil aggregates. Soil Technology, 63, 321–327.

    Article  Google Scholar 

  • Whiteley, G. M., & Williams, S. (1993). Effects of treatment of metalliferous mine spoil with lignite derived humic substances on the growth responses of metal tolerant and non metal tolerant cultivars of Agrostis capillaris L. Soil Technology, 6, 163–171.

    Article  Google Scholar 

Download references

Acknowledgements

Research funds for this project were provided by the University of Manitoba, the Natural Sciences and Engineering Research Council of Canada (IPS scholarship to CS), BlackEarth Humates Ltd and Manitoba Innovation, Energy and Mines. Thanks to Merv Fisher (BlackEarth Humates Ltd.) for providing advice and the humic substances as well as to Manitoba Conservation for allowing access to the site (work permit number WPG 17623). We would also like to thank C. Nakata, S. Green, K. Kivinen, D. Szczerski, P. Ouellette, I. Young, R. Sheffield, J. Christensen, K. Kostyra, L. Smith, J. Montgomery, and J. Makar for field and/or lab assistance. This paper is dedicated to the memory of Eva Sailerova who passed away during the study and was instrumental in getting us started on the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Renault.

Appendix

Appendix

Table 8 Species list of plants growing on tailings amended with modified humic substances at the Central Manitoba Mine Tailings

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczerski, C., Naguit, C., Markham, J. et al. Short- and Long-Term Effects of Modified Humic Substances on Soil Evolution and Plant Growth in Gold Mine Tailings. Water Air Soil Pollut 224, 1471 (2013). https://doi.org/10.1007/s11270-013-1471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1471-y

Keywords

Navigation