Skip to main content

Advertisement

Log in

Differential Sex, Morphotype and Tissue Accumulation of Mercury in the Crab Carcinus maenas

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Carcinus maenas is an invasive species of recognised economical and ecological importance in which mercury accumulation could be a pathway for bioamplification through food webs. Little information is available about differential accumulation between crab sexes and morphotypes. Taking this in mind, a set of different industrial discharge scenarios were investigated in 96-h laboratory experiments for assessing the accumulation of inorganic mercury from contaminated seawater into the tissues of C. maenas. Three groups of crabs (green males, green and red females) where exposed to 5, 50 and 250 μg Hg L−1. Differences among sexes, morphotypes and tissues were detected, depending on the mercury concentration. The muscle did not show differential accumulation between sexes or morphotypes. For mercury-exposed crabs, the contaminant was accumulated preferably in the gills (more than 75%) while, in control experiments, it was in the internal organs, muscle and hepatopancreas, and gills corresponded to less than 31% of the total mercury quantified. The different tissue contamination seems dependent on the major pathway of exposure, diet or water. Mercury accumulation by the crab was a rapid process and could represent a risk for the environment only after 96 h. In a scenario of a discharge point of 250 μg L−1, all tissues of crabs exposed would attain a very close, or even exceed the threshold concentration value for human consumption (0.5 mg kg−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abelló, P., Aagaard, A., Warman, C. G., & Depledge, M. H. (1997). Spatial variability in the population structure of the shore crab Carcinus maenas (Crustacea: Brachyura) in a shallow-water, weakly tidal fjord. Marine Ecology Progress Series, 147, 97–103.

    Article  Google Scholar 

  • Andres, S., Laporte, J. M., & Mason, R. P. (2002). Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus). Aquatic Toxicology, 56, 303–320.

    Article  CAS  Google Scholar 

  • Baeta, A., Cabral, H. N., Neto, J. M., Marques, J. C., & Pardal, M. A. (2005). Biology, population dynamics and secondary production of the green crab Carcinus maenas (L.) in a temperate estuary. Estuarine Coastal and Shelf Science, 65, 43–52.

    Article  Google Scholar 

  • Bamber, S. D., & Depledge, M. H. (1997). Responses of shore crabs to physiological challenges following exposure to selected environmental contaminants. Aquatic Toxicology, 40, 79–92.

    Article  CAS  Google Scholar 

  • Bjerregaard, P. (1990). Influence of physiological condition on cadmium transport from haemolymph to hepatopancreas in Carcinus maenas. Marine Biology, 106, 199–209.

    Article  CAS  Google Scholar 

  • Bjerregaard, P. (1991). Relationship between physiological condition and cadmium accumulation in Carcinus maenas (L.). Comparative Biochemistry and Physiology A, 99, 75–83.

    Article  Google Scholar 

  • Bjerregaard, P., & Christensen, L. (1993). Accumulation of organic and inorganic mercury from food in the tissues of Carcinus maenas: Effect of waterborne selenium. Marine Ecology Progress Series, 99, 271–281.

    Article  CAS  Google Scholar 

  • Bondgaard, M., Nørum, U., & Bjerregaard, P. (2000). Cadmium accumulation in the female shore crab Carcinus maenas during the moult cycle and ovarian maturation. Marine Biology, 137, 995–1004.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M. (1966). Trace metals in biochemistry. London: Academic.

    Google Scholar 

  • Bryan, G. W. (1964). Zinc regulation in the lobster Homarus vulgaris. I. Tissue zinc and copper concentrations. Journal of the Marine Biological Association of the United Kingdom, 44, 549–563.

    Article  CAS  Google Scholar 

  • Bryan, G. W. (1971). The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proceedings of the Royal Society B, 177, 389–410.

    Article  CAS  Google Scholar 

  • Calderón, J., Ortiz-Pérez, D., Yáñez, L., & Díaz-Barriga, F. (2003). Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicology and Environmental Safety, 56, 93–103.

    Article  Google Scholar 

  • Canli, M., & Furness, R. W. (1995). Mercury and cadmium uptake from seawater and from food by the norway lobster Nephrops norvegicus. Environmental Toxicology and Chemistry, 14, 819–828.

    CAS  Google Scholar 

  • Cardoso, P. G., Lillebø, A. I., Pereira, E., Duarte, A. C., & Pardal, M. A. (2009). Different mercury bioaccumulation kinetics by two macrobenthic species: The bivalve Scrobicularia plana and the polychaete Hediste diversicolor. Marine Environmental Research, 68, 12–18.

    Article  CAS  Google Scholar 

  • Coelho, J. P., Reis, A. T., Ventura, S., Pereira, M. E., Duarte, A. C., & Pardal, M. A. (2008). Pattern and pathways for mercury lifespan bioaccumulation in Carcinus maenas. Marine Pollution Bulletin, 56, 1104–1110.

    Article  CAS  Google Scholar 

  • Cohen, A. N., Carlton, J. T., & Fountain, M. C. (1995). Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California. Marine Biology, 122, 225–237.

    Google Scholar 

  • Dam, E., Styrishave, B., Rewitz, K. F., & Andersen, O. (2006). Intermoult duration affects the susceptibility of shore crabs Carcinus maenas (L.) to pyrene and their ability to metabolise it. Aquatic Toxicology, 80, 290–297.

    Article  CAS  Google Scholar 

  • Domouhtsidou, G. P., & Dimitriadis, V. K. (2000). Ultrastructural localization of heavy metals (Hg, Ag, Ph, and Cu) in gills and digestive gland of mussels, Mytilus galloprovincialis (L.). Archives of Environmental Contamination and Toxicology, 38, 472–478.

    Article  CAS  Google Scholar 

  • Evans, D. W., Kathman, R. D., & Walker, W. W. (2000). Trophic accumulation and depuration of mercury by blue crabs (Callinectes sapidus) and pink shrimp (Penaeus duorarum). Marine Environmental Research, 49, 419–434.

    Article  CAS  Google Scholar 

  • Grosholz, E. D., & Ruiz, G. M. (1995). Spread and potential impact of the recently introduced European green crab, Carcinus maenas, in central California. Marine Biology, 122, 239–247.

    Google Scholar 

  • Horvat, M. (2005). Determination of mercury and its compounds in water, sediment, soil and biological samples. Chap. 8. In N. Pirrone & K. R. Mahaffey (Eds.), Dynamics of mercury pollution on regional and global scales: Atmospheric processes and human exposure around the world (pp. 153–190). USA: Springer.

    Chapter  Google Scholar 

  • Inza, B., Ribeyre, F., & Boudou, A. (1998). Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): Uptake and depuration in Corbicula fluminea. Effects of temperature and pH. Aquatic Toxicology, 43, 273–285.

    Article  CAS  Google Scholar 

  • Laporte, J. M., Truchot, J. P., Ribeyre, F., & Boudou, A. (1997). Combined effects of water pH and salinity on the bioaccumulation of inorganic mercury and methylmercury in the shore crab Carcinus maenas. Marine Pollution Bulletin, 34, 880–893.

    Article  CAS  Google Scholar 

  • Laporte, J. M., Andres, S., & Mason, R. P. (2002a). Effect of ligands and other metals on the uptake of mercury and methylmercury across the gills and the intestine of the blue crab (Callinectes sapidus). Comparative Biochemistry and Physiology. C: Toxicology & Pharmacology, 131, 185–196.

    Article  Google Scholar 

  • Laporte, J. M., Truchot, J. P., Mesmer-Dudons, N., & Boudou, A. (2002b). Bioaccumulation of inorganic and methylated mercury by the gills of the shore crab Carcinus maenas: Transepithelial fluxes and histochemical localization. Marine Ecology Progress Series, 231, 215–228.

    Article  CAS  Google Scholar 

  • Lawson, N., & Mason, R. (1998). Accumulation of mercury in estuarine food chains. Biogeochemistry, 40, 235–247.

    Article  CAS  Google Scholar 

  • Lee, K. T., McKnight, A., Kellogg, K., & Juanes, F. (2003). Salinity tolerance in color phases of female green crabs, Carcinus maenas (Linnaeus, 1758). Crustaceana, 76, 247–253.

    Article  Google Scholar 

  • Mason, R. P., Reinfelder, J. R., & Morel, F. M. M. (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology, 30(6), 1835–1845.

    Article  CAS  Google Scholar 

  • McGaw, I. J., & Naylor, E. (1992). Salinity preference of the shore crab Carcinus maenas in relation to coloration during intermoult and to prior acclimation. Journal of Experimental Marine Biology and Ecology, 155, 145–159.

    Article  Google Scholar 

  • McKnight, A., Mathews, L. M., Avery, R., & Lee, K. T. (2000). Distribution is correlated with color phase in green crabs, Carcinus maenas (Linnaeus, 1758) in Southern New England. Crustaceana, 76, 763–768.

    Article  Google Scholar 

  • Raffaelli, D., Conacher, A., McLachlan, H., & Emes, C. (1989). The role of epibenthic crustacean predators in an estuarine food web. Estuarine, Coastal and Shelf Science, 28, 149–160.

    Article  Google Scholar 

  • Reid, D. G., Abelló, P., Kaiser, M. J., & Warman, C. G. (1997). Carapace colour, inter-moult duration and the behavioural and physiological ecology of the Shore Crab Carcinus maenas. Estuarine, Coastal and Shelf Science, 44, 203–211.

    Article  Google Scholar 

  • Rewitz, K., Styrishave, B., & Andersen, O. (2003). CYP330A1 and CYP4C39 enzymes in the shore crab Carcinus maenas: Sequence and expression regulation by ecdysteroids and xenobiotics. Biochemical and Biophysical Research Communications, 310, 252–260.

    Article  CAS  Google Scholar 

  • Soundarapandian, P., Premkumar, T., & Dinakaran, G. K. (2010). Impact of bioaccumulation of mercury in certain tissues of the marine shrimp, Penaeus monodon (Fabricius) from the Uppanar Estuary. Current Research Journal of Biological Sciences, 2(2), 114–117.

    CAS  Google Scholar 

  • Styrishave, B., & Andersen, O. (2000). Seasonal variations in hepatopancreas fatty acid profiles of two colour forms of shore crabs, Carcinus maenas. Marine Biology, 137, 415–422.

    Article  CAS  Google Scholar 

  • Styrishave, B., Faldborg Pertersen, M., & Andersen, O. (2000). Influence of cadmium accumulation and dietary status on fatty acid composition in two colour forms of shore crabs, Carcinus maenas. Marine Biology, 137, 423–433.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology, 18, 149–175.

    Article  CAS  Google Scholar 

  • Warman, C. G., Reid, D. G., & Naylor, E. (1993). Variation in the tidal migratory behaviour and rhythmic light-responsiveness in the shore crab, Carcinus maenas. Journal of Marine Biology Association of the United Kingdom, 73, 355–364.

    Article  Google Scholar 

  • Watras, C. J., & Bloom, N. S. (1992). Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography, 37, 1313–1318.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by FCT (Fundação para a Ciência e Tecnologia) through a PhD grant awarded to Sónia Costa (SFRH/BD/31247/2006) and through the Research Project MERCOAST (PTDC/MAR/101906/2008). The authors are indebted to all colleagues who assisted in the field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, S., Viegas, I., Pereira, E. et al. Differential Sex, Morphotype and Tissue Accumulation of Mercury in the Crab Carcinus maenas . Water Air Soil Pollut 222, 65–75 (2011). https://doi.org/10.1007/s11270-011-0809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0809-6

Keywords

Navigation