Skip to main content
Log in

Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The work presented herein addresses the problem of sensor placement optimization in urban water distribution networks by use of an entropy-based approach, for the purpose of efficient and economically viable waterloss incident detection. The proposed method is applicable to longitudinal rather than spatial sensing, thus to devices such as acoustic, pressure, or flow sensors acting on pipe segments. The method utilizes the maximality, subadditivity and equivocation properties of entropy, coupled with a statistical definition of the probability of sensing within a pipe segment, to assign an entropy metric to each pipe segment and subsequently optimize the location of sensors in the network based on maximizing the total entropy in the network. The method proposed is a greedy-search heuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Afshar A, Marino M (2012) Multi-objective coverage-based ACO model for quality monitoring in large water networks. Water Resour Manag 26(8):2159–2176

    Article  Google Scholar 

  • Agathokleous A, Papadopoulou C, Christodoulou S (2011) Real-time monitoring of water distribution networks. In: Proc., 8th IWA symposium on systems analysis and integrated assessment (Watermatex). San Sebastian, Spain, 20–22 June 2011

  • Andreou SA, Marks DH, Clark RM (1987) New methodology for modelling break failure patterns in deteriorating water distribution systems: applications. Adv Water Resour AWREDI 10:2–10

    Article  Google Scholar 

  • Aral MM, Guan J, Maslia ML (2010) Optimal design of sensor placement in water distribution systems. Water Resour Plan Manag 136(1):5–18

    Article  Google Scholar 

  • Berger-Wolf TY, Hart WE, Saia J (2005) Discrete sensor placement problems in distribution networks. Math Comput Model 42(13):1385–1396

    Article  Google Scholar 

  • Berry J, Fleischer L, Hart W, Phillips C (2003) Sensor placement in municipal water networks. Water 131:237–243

    Google Scholar 

  • Berry J, Hart WE, Phillips CA, Uber J, Watson J-P (2006) Sensor placement in municipial water networks with temporal integer programming models. Water Resour Plan Manag 132(4):218–224

    Article  Google Scholar 

  • Boulos PF (2007) A GIS-centric approach for optimal sensor placement in large-scale water distribution systems. Spatial analysis of optimized sensor locations using GIS. In: Proc., world environmental and water resources congress 2007. Tampa, Florida, 15–19 May 2007

  • Carr RD, Greenberg HJ, Hart WE, Konjevod G, Lauer E, Lin H, Morrison T, Phillips CA (2006) Robust optimization of contaminant sensor placement for community water systems. Math Program 107(1):337–356

    Article  Google Scholar 

  • Caselton WF, Zidek JV (1984) Optimal monitoring network designs. Stat Probab Lett 2(4):223–227

    Article  Google Scholar 

  • Christodoulou S (2004) Optimum bid markup calculation using neurofuzzy systems and multidimensional risk analysis algorithm. Comput Civ Eng 18(4):322–330

    Article  Google Scholar 

  • Christodoulou S (2011) Water network assessment and reliability analysis by use of survival analysis. Water Resour Manag 25(4):1229–1238

    Article  Google Scholar 

  • Christodoulou S, Deligianni A (2010) A neurofuzzy decision framework for the management of water distribution networks. Water Resour Manag 24(1):139–156

    Article  Google Scholar 

  • Christodoulou S, Agathokleous A (2012) A study on the effects of intermittent water supply on the vulnerability of urban water distribution networks. Water Sci Technol Water Supply 12(4):523–530

    Article  Google Scholar 

  • Christodoulou S, Deligianni A, Aslani P, Agathokleous A (2009) A neurofuzzy decision framework for the management of water distribution networks. Comput Environ Urban Syst 33(2): 138–149

    Article  Google Scholar 

  • Christodoulou S, Agathokleous A, Charalambous B, Adamou A (2010) Proactive risk-based integrity assessment of water distribution networks. Water Resour Manag 24(13):3715–3730

    Article  Google Scholar 

  • Clark RM, Stafford CL, Goodrich JA (1982) Water distribution systems: a spatial and cost evaluation. J Water Resour Plan Manag Div 108:243–256

    Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Deshpande A, Guestrin C, Madden S, Hellerstein J, Hong W (2004) Model-driven data acquisition in sensor networks. In: Proc., 30th international conference on very large data bases (VLDB)

  • Diwold K, Ruhnke T, Middendorf M (2010) Sensor placement in water networks using a population-based ant colony optimization algorithm. In: Pan J-S, Chen S-M, Nguyen N (eds) Proc., Computational collective intelligence. Technologies and applications. Lecture notes in computer science, vol 6423. Springer, Berlin/Heidelberg, pp 426–437

    Chapter  Google Scholar 

  • Dorini G, Jonkergouw P, Kapelan Z, di Pierro F, Khu ST, Savic D (2006) An efficient algorithm for sensor placement in water distribution systems. In: Proc., water distribution systems analysis symposium. Cincinnati, Ohio, 27–30 Aug 2006

  • Dorini G, Jonkergouw P, Kapelan Z, Savic D (2010) SLOTS: effective algorithm for sensor placement in water distribution systems. Water Resour Plan Manag 136(6):620–628

    Article  Google Scholar 

  • Eliades DG, Polycarpou MM (2010) A fault diagnosis and security framework for water systems. IEEE Trans Control Syst Technol 18(6):1254–1265

    Google Scholar 

  • Eliades DG, Polycarpou MM, Charalambous B (2011) A security-oriented manual quality sampling methodology for water systems. Water Resour Manag 25(4):1219–1228

    Article  Google Scholar 

  • Gonzalez-Banos HH, Latombe J (2001) A randomized art-gallery algorithm for sensor placement. In: Proc., 17th ACM symposium on computational geometry, pp 232–240

  • Goulter IC, Kazemi A (1988) Spatial and temporal groupings of water main pipe breakage in Winnipeg. Can J Civ Eng 15:91–97

    Article  Google Scholar 

  • Guestrin C, Krause A, Singh AP (2005) Near-optimal sensor placements in Gaussian processes. In: Proc., 22nd international conference on machine learning. Bonn, Germany, 7–11 Aug 2005, pp 265–272

  • GunHui C, DongEil C, DoGuen Y, HwanDon J, JoongHoon K (2009) Determination of optimal pressure monitoring locations for water distribution systems using entropy theory. J. Korea Water Resources Association 42(7):537–546

    Article  Google Scholar 

  • Hart WE, Berry JW, Boman E, Phillips CA, Riesen LA, Watson JP (2008) Limited-memory techniques for sensor placement in water distribution networks. In: Maniezzo V, Battiti R, Watson J-P (eds) Learning and intelligent optimization, vol 5313. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 125–137

    Chapter  Google Scholar 

  • Hart WE, William E, Regan M (2010) Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. Water Resour Plan Manag 136(6):611–619

    Article  Google Scholar 

  • Isovitsch S, VanBriesen J (2008) Sensor placement and optimization criteria dependencies in a water distribution System. Water Resour Plan Manag 134(2):186–196

    Article  Google Scholar 

  • Kanakoudis VK (2004a) A troubleshooting manual for handling operational problems in water pipe networks. Water Supply Res Technol AQUA 53(2):109–124

    Google Scholar 

  • Kanakoudis VK (2004b) Vulnerability based management of water resources systems. Hydroinformatics 6(2):133–156

    Google Scholar 

  • Kanakoudis VK, Tolikas DK (2001) The role of leaks and breaks in water networks—technical and economical solutions. Water Supply Res Technol AQUA 50(5):301–311

    Google Scholar 

  • Kanakoudis VK, Tolikas DK (2004) Assessing the performance level of a water system. Water Air Soil Pollut Focus 4(4):307–318

    Google Scholar 

  • Kanakoudis V, Tsitsifli S (2011) Water pipe network reliability assessment using the DAC method. Desalination and Water Treatment 33(1-3):97–106

    Article  Google Scholar 

  • Koch M, McKenna S (2011) Distributed sensor fusion in water quality event detection. Water Resour Plan Manag 137(1):10–19

    Article  Google Scholar 

  • Kleiner Y, Rajani B (1999) Using limited data to assess future needs. J Am Water Resour Assoc 91:47–61

    Google Scholar 

  • Krause A, Leskovec J, Guestrin C, VanBriesen J, Faloutsos C (2008a) Efficient sensor placement optimization for securing large water distribution networks. J Water Resour Plan Manag 134(6):516–526

    Article  Google Scholar 

  • Krause A, Singh A, Guestrin C (2008b) Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. Mach Learn Res 9:235–284

    Google Scholar 

  • Landsberg P (1984) Is equilibrium always an entropy maximum? J Stat Phys 35:159–169

    Article  Google Scholar 

  • Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson J-P, Dorini G, Jonkergouw P, Kapelan Z, di Pierro F, Khu S-T, Savic D, Eliades D, Polycarpou M, Ghimire SR, Barkdoll BD, Gueli R, Huang JJ, McBean, EA, James W, Krause A, Leskovec J, Isovitsch S, Xu J, Guestrin C, VanBriesen J, Small M, Fischbeck P, Preis A, Propato M, Piller O, Trachtman GB, Wu ZY, Walski T (2008) The battle of the water sensor networks (BWSN): a design challenge for engineers and algorithms. Water Resour Plan Manag 134:556–569

    Article  Google Scholar 

  • Park S (2008) Identifying the hazard characteristics of pipes in water distribution systems by using the proportional hazards model: theory. KSCE J Civ Eng 8(6):663–668

    Article  Google Scholar 

  • Parzen E (1961) On estimation of a probability density function and mode. Ann Math Stat 33:113–139

    Google Scholar 

  • Perez R, Puig V, Pascual J, Peralta A, Landeros E, Jordanas LI (2009) Pressure sensor distribution for leak detection in Barcelona water distribution network. Water Sci Technol Water Supply WSTWS 9(6):715–721

    Article  Google Scholar 

  • Prasad TD, Hong S-H, Park N (2003) Reliability based design of water distribution networks using multi-objective genetic algorithms. KSCE J Civ Eng 7(3):351–361

    Article  Google Scholar 

  • Preis A, Ostfeld A (2008) Genetic Algorithm for contaminant source characterization using imperfect sensors. Civ Eng Environ Syst 25(1):29–39

    Article  Google Scholar 

  • Ramakrishnan N, Bailey-Kellogg C, Tadepalli S, Pandey V N (2005) Gaussian processes for active data mining of spatial aggregates. In: Proc., 5th SIAM international conference on data mining (SDM 2005). Newport Beach, United States, 21–23 April 2005, pp 427–438

  • Shamir U, Howard C (1979) An analytical approach to scheduling pipe replacement. J Am Water Works Assoc 71:248–258

    Google Scholar 

  • Shewry MC, Wynn HP (1987) Maximum entropy sampling. J Appl Stat 14:165–170

    Article  Google Scholar 

  • Tsitsifli S, Kanakoudis V, Bakouros I (2011) Pipe networks risk assessment based on survival analysis. Water Resour Manag 25(14):3729–3746

    Article  Google Scholar 

  • Tuhovcak L, Rucka J, Juhanak T (2006) Security of water supply systems: from Source to Tap. In: NATO science for peace and security series C: environmental security, vol 8. Springer, Netherlands, pp 169–182

    Google Scholar 

  • Watson JP, Greenberg HJ, Hart WE (2004) A multiple-objective analysis of sensor placement optimization in water networks. In: Proc., world water and environment resources

  • Watson JP, Hart WE, Murray R (2006) Formulation and optimization of robust sensor placement problems for contaminant warning systems. In: Proc., water distribution system symposium

  • Yang J, Wen Y, Li P (2008) Leak acoustic detection in water distribution pipelines. In: Proc., 7th world congress on intelligent control and automation (WCICA 2008). Chongqing, China, 25–27 June 2008, pp 3057–3061

  • Yang J, Wen Y, Li P (2010) Information processing for leak detection on underground water supply pipelines. In: Proc., 2010 third international workshop on advanced computational intelligence (IWACI). Chongqing, China, 25–27 June 2008, pp 623–629

Download references

Acknowledgements

The work presented herein is part of research initiatives of the NIREAS International Water Research Center, co-financed by the European Regional Development Fund and the Republic of Cyprus through the Cyprus Research Promotion Foundation (Grants No. NEA YPODOMI/STRAT/ 0308/09, AEIFORIA/ASTI/0609(BIE)/07 and PENEK/ENISH/0308/34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Symeon E. Christodoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christodoulou, S.E., Gagatsis, A., Xanthos, S. et al. Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks. Water Resour Manage 27, 4443–4468 (2013). https://doi.org/10.1007/s11269-013-0419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0419-8

Keywords

Navigation