Skip to main content
Log in

Nitrogen Saturation of Terrestrial Ecosystems: Some Recent Findings and Their Implications for Our Conceptual Framework

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

The consequences of nitrogen (N) enrichment for terrestrial and freshwater ecosystems are of increasing concern in many areas due to continued or increasing high emission rates of reactive N. Within terrestrial ecosystems various conceptual frameworks and modelling approaches have been developed which have enhanced our understanding of the sequence of changes associated with increased N availability and help us predict their future impacts. Here, some recent findings are described and their implications for these conceptual frameworks and modelling approaches discussed. They are: (a) an early loss of plant species that are characteristic of low N conditions as N availability increases and a loss of species with high N retention efficiencies (so called N ‘filters’), (b) suppression of microbial immobilisation of deposited \({\text{NO}}^{ - }_{3} \) due to increased \({\text{NH}}^{ + }_{4} \) availability in the early stages of N saturation, (c) the early onset of \({\text{NO}}^{ - }_{3} \) leaching due to these changes (a and b above) in both plant and microbial functioning, (d) reduced sensitivity of vegetation to N additions in areas with high historical N deposition, (e) delayed changes in soil C:N changes due to increased net primary productivity and reduced decomposition of soil organic matter. Some suggestions of early indicators of N saturation are suggested (occurrence of mosses; \({\text{NH}}^{ + }_{4} :{\text{NO}}^{ - }_{3} \) ratio in surface soils) which indicate either a shift in ecosystem function and/or structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology & Evolution, 7, 220–224.

    Article  Google Scholar 

  • Aber, J. D., Goodale, C., Ollinger, S. V., Smith M., Magill, A., & Martin, M. E., et al. (2003). Is nitrogen deposition altering the nitrogen status of Northeastern forests? Bioscience, 53, 375–389.

    Article  Google Scholar 

  • Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., & Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. Bioscience, 48, 921–934.

    Article  Google Scholar 

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

    Article  Google Scholar 

  • Adams, M., Ineson, P., Binkley, D., Cadisch, G., Scholes, M., Hicks, K., & Tokuchi, N. (2004). Soil functional responses to excess nitrogen inputs at global scale. Ambio, 33, 530–536.

    Google Scholar 

  • Berg, B., & Meentemeyer, V. (2002). Litter quality in a north European transect versus carbon storage potential. Plant and Soil, 242, 83–92.

    Article  CAS  Google Scholar 

  • Betlach, M. R., Tiedje, J. M., & Firestone, R. B. (1981). Assimilatory nitrate uptake in Pseudomonas fluorescens studied using Nitrogen-13. Archives of Microbiology, 129, 135–140.

    Article  CAS  Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    Article  CAS  Google Scholar 

  • Bradley, R. L. (2001). An alternative explanation for the post-disturbance \( NO^{ - }_{3} \) flush in some forest ecosystems. Ecology Letters, 4, 412–416.

    Article  Google Scholar 

  • Bredemeier, M., Blanck, K., Xu, Y. J., Tietema, A., Boxman, A. W., & Emmett, B. A., et al. (1998). Input–output budgets at the NITREX sites. Forest Ecology and Management, 101, 57–64.

    Article  Google Scholar 

  • Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A., & Parkhursts, D. F. (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359–2365.

    Google Scholar 

  • Carroll, J. A., Caporn, S. J. M., Cawley, L., Read, D. J., & Lee, J. A. (1999). The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytologist, 141, 423–431.

    Article  Google Scholar 

  • Carroll, J. A., Caporn, S. J. M., Johnson, D., Morecroft, M. D., & Lee, J. A. (2003). Interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition. Environmental Pollution, 121, 363–376.

    Article  CAS  Google Scholar 

  • Carroll, J. A., Johnson, D., Morecroft, M., Taylor, A., Caporn, S. J. M., & Lee, J. A. (2000). The effect of long-term nitrogen additions on the bryophyte cover of upland acidic grasslands. Journal of Bryology, 22, 83–89.

    Google Scholar 

  • Cooper, D. M. (2005). Evidence of sulphur and nitrogen deposition signals at the United Kingdom acid waters monitoring network sites. Environmental Pollution, 137, 41–54.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Emmett, B. A., Grant, H., Kernan, M., Reynolds, B., & Shilland, E. (2005). Nitrogen saturation in UK moorlands: The critical role of bryophytes and lichens in determining retention of atmospheric N deposition. Journal of Applied Ecology, 42, 507–517.

    Article  CAS  Google Scholar 

  • Davidson, E. A., Hart, S. C., & Firestone, M. K. (1992). Internal cycling of nitrate in soils of a mature coniferous forest. Ecology, 73, 1148–1156.

    Article  Google Scholar 

  • Davidson, E. A., Hart, S. C., Shanks, C. A., & Firestone, M. K. (1991). Measuring gross nitrogen mineralization, immobilization and nitrification by 15N isotopic pool dilution in intact soil cores. Journal of Soil Science, 42, 335–349.

    Article  CAS  Google Scholar 

  • De Vries, W., Kros, H., Reinds, G. J., Wamelink, W., Van Dobbven, H., & Bobbink, R., et al. (2006). Development in modelling critical nitrogen loads for terrestrial ecosystems in Europe. Alterra, CCE report 2006. pp. 186 (in preparation).

  • Dise, N., & Wright R. F. (1995). Nitrogen leaching in European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–162.

    Article  Google Scholar 

  • Ellenberg, H., Weber, H. E., Dull., R., Wirth, W., Werner, W., & Paulissen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.

    Google Scholar 

  • Emmett, B. A., Boxman, D., Bredemeier, M., Gundersen, P., Kjonaas, O. J., & Moldan, F., et al. (1998a). Predicting the effects of atmospheric nitrogen deposition in conifer stands: Evidence from the NITREX ecosystem-scale experiments. Ecosystems, 1, 352–360.

    Article  CAS  Google Scholar 

  • Emmett, B. A., Jones, M. L. M., Jones, H., Wildig, J., Williams, B., & Davey, M., et al. (2004). Grazing/nitrogen deposition interactions in upland acid moorland. Contract report to Countryside Council for Wales (Contract no. FV-73-03-89B) and the National Assembly for Wales (Contract No. 182-2002). pp. 96.

  • Emmett, B. A., Reynolds, B., Silgram, M., Sparks, T. H., & Woods, C. (1998b). The consequences of chronic nitrogen additions on N cycling and soilwater chemistry in a N saturated Sitka spruce stand, North Wales. Forest Ecology and Management, 101, 165–175.

    Article  Google Scholar 

  • Emmett, B. A., Reynnolds, B., Stevens, P. A., Norris, D. A., Hughes, H., & Gőrres, J., et al. (1993). Nitrate leaching from afforested Welsh catchments – Interactions between stand age and nitrogen deposition. Ambio, 22, 386–394.

    Google Scholar 

  • Ertsen, A. C. D., Alkemade, J. R. M., & Wassen, M. J. (1998). Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecology, 135, 113–124.

    Article  Google Scholar 

  • Evans, C. D., Reynolds, B., Jenkins, A., Helliwell, R., Curtis, C. J., & Goodale, C. L., et al. (2006). Evidence that soil carbon pool determines susceptibility of semi-natural ecosystems to elevated nitrogen leaching. Ecosystems, 9, 453–462.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., & Geiser, L., et al. (2003). Ecological effects of nitrogen deposition in the Western United States. Bioscience, 53, 404–420.

    Article  Google Scholar 

  • Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., & Johnson, D. W., et al. (1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystems responses and management strategies. Ecological Applications, 8, 706–733.

    Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., & Cowling, E. B., et al. (2003). The nitrogen cascade. Bioscience, 53, 341–356.

    Article  Google Scholar 

  • Gessler, A., Kopriva, S., & Rennenberg, H. (2004). Regulation of nitrate uptake at the whole-tree level: Interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiology, 24, 1313–1321.

    CAS  Google Scholar 

  • Gilliam, F. S., Adams, M. B., & Yurish, B. M. (1996). Ecosystem nutrient responses to chronic nitrogen inputs at Fernow Experimental Forest, West Virginia. Canadian Journal of Forest Research, 26, 196–205.

    Article  Google Scholar 

  • Goodale, C. L., Aber, J. D., & Vitousek, P. M. (2003). An unexpected nitrate decline in New Hampshire streams. Ecosystems, 6, 75–86.

    Article  CAS  Google Scholar 

  • Goulding, K. W. T., Bailey, N. J., Bradbury, N. J., Hargreaves, P., Howe, M., & Murphy, D. V., et al. (1998). Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49–58.

    Article  CAS  Google Scholar 

  • Gundersen, P., Callensen, I., & de Vries, W. (1998a). Nitrogen leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution, 102, 403–407.

    Article  CAS  Google Scholar 

  • Gundersen, P., Emmett, B. A., Kjonaas, O. J., Koopmans, C. J., & Tietema, A. (1998b). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology and Management, 101, 37–56.

    Article  Google Scholar 

  • Haddad, N. M., Haarstad, J., & Tilman, D. (2000). The effects of long-term nitrogen loading on grassland insect communities. Oecologia, 124, 73–84.

    Article  Google Scholar 

  • Hagedorn, F., Spinnler, D., & Siegwolf, R. (2003). Increased N deposition retards mineralization of old soil organic matter. Soil Biology and Biochemistry, 35, 1683–1692.

    Google Scholar 

  • Haines-Young, R., Barr, C. J., Firbank, L. G., Furse, M., Howard, D. C., & McGowan, G., et al. (2003). Changing landscapes, habitats and vegetation diversity across Great Britain. Journal of Environmental Management, 67, 267–281.

    Article  CAS  Google Scholar 

  • Hart, S. C., Nason, G. E., Myrold, D. D., & Perry, D. A. (1994). Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology, 75, 880–891.

    Article  Google Scholar 

  • Hill, M. O., Mountford, J. O., Roy, D. B., & Bunce, R. G. H. (1999). Ellenberg’s indicator values for British plants. ECOFACT Volume II, Technical Annex. Huntingdon, UK: ITE Monkswood.

    Google Scholar 

  • Hughes, S., Grant, H., Ostle, N., Emmett, B. A., & UKREATE. (2004). The controls on immobilisation of ammonium and nitrate and the link to the onset of N saturation. In B. A. Emmett & G. McShane (Eds.), Terrestrial Umbrella Final Report May 2004 (pp. 321–329). NERC-DEFRA Terrestrial Umbrella Contract Number EPG 1/3/186.

  • Jones, M. L. M. (2005). Nitrogen deposition in upland grasslands: Critical loads, management and recovery. PhD Thesis, University of Sheffield, UK.

  • Kahl, J. S., Norton, S. A., Fernandez, I. J., Nadelhoffer, K. J., Driscoll, C. T. Y., & Aber, J. D. (1993). Experimental inducement of nitrogen saturation at the watershed scale. Environmental Science & Technology, 27, 565–568.

    Article  CAS  Google Scholar 

  • Lamers, L. P. M., Bobbink, R., & Roelofs, J. G. M. (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583–586.

    Google Scholar 

  • Lovett, G. M., Weathers, K. C., & Arthur, M. A. (2002). Control of nitrogen loss from forests by soil carbon: Nitrogen ratio and tree species composition. Ecosystems, 5, 712–718.

    Article  CAS  Google Scholar 

  • Macdonald, J. A., Dise, N. B., Matzner, E., Armbruster, M., Gundersen, P., & Forsius, M. (2002). Nitrogen inputs together with nitrogen enrichment predict nitrate leaching in European forests. Global Change Biology, 8, 1028–1033.

    Article  Google Scholar 

  • Magill, A. H., Aber, J. D., Hendricks, J. J., Bowden, R. D., Melillo, J. M., & Steudler, P. (1997). Biogeochemical response of forest ecosystems to simluated chronic nitrogen deposition. Ecological Applications, 7, 402–415.

    Google Scholar 

  • Matzner, E., & Grosholz, C. (1998). Beziehung zwischen \( NO^{ - }_{3} \) Austrägen, C/N-Verhältnissen ser Auflage und N-Einträgen in Fichtenwald (Picea abies Karst)-Ökosystemen Mitteleuropus. Forstwissenschaftliches Centralblatt, 116, 39–44.

    Google Scholar 

  • McNulty, S. G., & Aber, J. D. (1993). Effects of chronic nitrogen additions on nitrogen cycling in a high-elevation spruce-fir stand across New England. Biogeochemistry, 14, 13–29.

    Google Scholar 

  • McNulty, S., & Aber, J. D. (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management, 84, 109–121.

    Article  Google Scholar 

  • Moldan, F., Kjønaas, O. J., Stuanes, A. O., & Wright, R. F. (2006). Increased nitrogen in runoff and soil following thirteen years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. Environmental Pollution 144(2):610–620.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K., Downs, M., Fry, B., Magill, A., & Aber, J. (1999a). Controls on N retention and exports in a forested watershed. Environmental Monitoring and Assessment, 55, 187–210.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjønaas, O. J., Koopmans, C. J., & Schleppi, P., et al. (1999b). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145–148.

    Article  CAS  Google Scholar 

  • Nihlgård, B. (1985). The ammonium hypothesis: An additional explanation to the forest dieback in Europe. Ambio, 14, 2–8.

    Google Scholar 

  • Nilsson, J., & Grennfelt, P. (Eds.) (1988). Critical Loads for Sulphur and Nitrogen. Report of the Skokloster Workshop. Miljörapport 15. Nordic Council of Ministers, Copenhagen.

  • Pardo, L. H., Kendall, C., Pett-Ridge, J., & Chang, C. C. Y. (2004). Evaluating the source of streamwater nitrate using delta N-15 and delta O-18 in nitrate in two watersheds in New Hampshire, USA. Hydrological Procedure, 18, 2699–2712.

    Article  Google Scholar 

  • Pennings, S. C., Clark, C. M., Cleland, E. E., Collins, S. L., Gough, L., & Gross, K. L., et al. (2005). Do individual plant species show predictable responses to nitrogen addition across multiple experiments. Oikos, 110, 547–555.

    Article  Google Scholar 

  • Persson, J., & Näsholm, T. (2002). Regulation of amino acid uptake in conifers by exogenous and endogenous nitrogen. Planta, 215, 639–644.

    Article  CAS  Google Scholar 

  • Power, S. A., Ashmore, M. R., & Cousins, D. A. (1998). Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environmental Pollution, 102(Suppl. 1), 27–34.

    Article  CAS  Google Scholar 

  • Press, M. C., Woodin, S. J., & Lee, J. A. (1986). The potential importance of increased nitrogen supply to the growth of the ombrotrophic Sphagnum species. New Phytologist, 138, 45–55.

    Article  Google Scholar 

  • Preston, C. D., Pearman, D. A., & Dines, T. D. (2002). New Plant Atlas of the British and Irish Flora (p. 42). New York: Oxford University Press.

    Google Scholar 

  • Providoli, I., Bugmann, H., Siegwolf, R., Buchmann, N., & Schlepp, P. (2005). Flow of deposited inorganic N in two Gleysol-dominated mountain catchments traced with \( {}^{{15}}NO^{ - }_{3} \) and \( {}^{{15}}NH^{ + }_{4} \). Biogeochemistry, 76, 453–475.

    Article  CAS  Google Scholar 

  • Rice, C. W., & Tiedje, J. M. (1989). Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biology & Biochemistry, 21, 597–602.

    Article  CAS  Google Scholar 

  • Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: Challenges of changing paradigm. Ecology, 85, 591–602.

    Article  Google Scholar 

  • Smart, S. M., Bunce, R. G. H., Marrs, R. H., LeDuc, M., Firbank, L. G., & Maskell, L. C., et al. (2005). Large-scale changes in the abundance of common plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: Tests of hypothesised changes in trait representation. Biological Conservation, 124, 355–371.

    Article  Google Scholar 

  • Smart, S. M., Robertson, J. C., Shielf, E. J., & van de Poll, H. M. (2003). Locating eutrophication effects across Britain vegetation between 1990 and 1998. Global Change Biology, 9, 1763–1774.

    Article  Google Scholar 

  • Stark, J. M., & Hart, S. C. (1997). High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature, 385, 61–64.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.

    Article  CAS  Google Scholar 

  • Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In L. A. Baker (Ed.), Environmental chemistry of lakes and reservoirs (pp. 223–284). Wahsington, DC: American Chemical Society.

    Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., & Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578.

    Article  CAS  Google Scholar 

  • Suding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., & Gross, K. L., et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387–4392.

    Article  CAS  Google Scholar 

  • Tietema, A. (1998). Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. Forest Ecology and Management, 101, 29–36.

    Article  Google Scholar 

  • Tietema, A., Emmett, B. A., Gundersen, P., Kjønaas, O. J., & Koopmans, C. J. (1998). The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. Forest Ecology and Management, 101, 19–27.

    Article  Google Scholar 

  • Van’t Riet, J., Stouthamer, A. H., & Planta, R. J. (1968). Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. Journal of Bacteriology, 96, 1455–1464.

    Google Scholar 

  • Vitousek, P. M., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D., & Schlesinger, W. H., et al. (1997). Human alteration of the global nitrogen cycle: Causes and consequence. Issues in Ecology, 1, 1–17.

    Google Scholar 

  • Waldrop, P., Zak, D. R., Sinsabaugh, R. L., Gallo, M., & Lauber, C. (2004). Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 14, 1172–1177.

    Article  Google Scholar 

  • Williard, K. W. J., DeWalle, D. R., Edwards, P. J., & Schnabel, R. R. (1997). Indicators of nitrate export from forested watersheds of the mid-Appalachians, United States of America. Global Biogeochemical Cycles, 11, 649–656.

    Article  CAS  Google Scholar 

  • Zak, D. R., Pregitzer, K. S., Holmes, W. E., Burton, A. J., & Zogg, G. P. (2004). Anthropogenic N deposition and the fate of (NO3-)-15N in a northern hardwood ecosystem. Biogeochemistry, 69, 143–157.

    Google Scholar 

  • Zogg, G. P., Zak, D. R., Pregitzer, K. S., & Burton, A. J. (2000). Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood. Ecology, 81, 1858–1866.

    Article  Google Scholar 

Download references

Acknowledgements

The UK Department of the Environment, Food and Rural Affairs and the Natural Environment Research Council provided the funding for many of the UK studies reported here and the time for this synthesis. My thanks to the Acid Rain 2005 Organising Committee for giving me the opportunity to share these ideas and to the many colleagues and two referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bridget A. Emmett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emmett, B.A. Nitrogen Saturation of Terrestrial Ecosystems: Some Recent Findings and Their Implications for Our Conceptual Framework. Water Air Soil Pollut: Focus 7, 99–109 (2007). https://doi.org/10.1007/s11267-006-9103-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-006-9103-9

Keywords

Navigation