Skip to main content
Log in

Hybrid Vector Filters based on Marginal Ordering for Impulsive Noise Suppression in Color Images

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

To attenuate impulsive noise in color images, a hybrid basic vector filter and its switching extensions are introduced in this paper. By utilizing reliable components provided by the marginal filter and retaining the inherent correlation between multi-channels, the new method selects the vector, which has minimal distance to the output of the marginal median filter. Based on this scheme, some well-known switching filters are easily modified to improve their noise suppression capability. The experiments demonstrate that the proposed filtering approach is more effective to suppress multichannel impulsive noise in color images, and its computation is more efficient than state-of-the-art basic vector filters. Moreover, extended experiments indicate that the noise suppression capability of several well-known switching vector filters can also be improved by adopting this basic scheme as an alternative approach at the replacement stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Koschan, A., & Abidi, M. (2008). Digital color image processing: Wiley-Interscience.

  2. Trussell, H., Saber, E., & Vrhel, M. (2005). Color image processing [basics and special issue overview. IEEE Signal Processing Magazine, 22, 14–22.

    Article  Google Scholar 

  3. Celebi, M.E., Kingravi, H.A., & Aslandogan, Y.A. (2007). Nonlinear vector filtering for impulsive noise removal from color images (Vol. 16, pp. 033008–033008).

  4. Barni, M., Bartolini, F., & Cappellini, V. (2000). Image processing for virtual restoration of artworks. IEEE Multimedia, 7(2), 34–37.

    Article  Google Scholar 

  5. Karvelis, P.S., Fotiadis, D.I., Tsalikakis, D.G., & Georgiou, I.A. (2009). Enhancement of multichannel chromosome classification using a region-based classifier and vector median filtering. IEEE Transactions on Information Technology in Biomedicine, 13(4), 561–570.

    Article  Google Scholar 

  6. Plataniotis, K.N., & Venetsanopoulos, A.N. (2000). Color image processing and applications: Springer.

  7. Lukac, R. (2004). Adaptive color image filtering based on center-weighted vector directional filters. Multidimensional Systems and Signal Processing, 15(2), 169–196.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lukac, R., & Smolka, B. (2003). Application of the adaptive center-weighted vector median framework for the enhancement of cdna microarray images. International Journal of Applied Mathematics and Computer Science, 13 (3), 369–384.

    MathSciNet  MATH  Google Scholar 

  9. Wang, G., Li, D., Pan, W., & Zang, Z. (2010). Modified switching median filter for impulse noise removal. Signal Processing, 90(12), 3213–3218.

    Article  MATH  Google Scholar 

  10. Jin, L., & Li, D. (2007). An efficient color-impulse detector and its application to color images. IEEE Signal Processing Letters, 14(6), 397–400.

    Article  Google Scholar 

  11. Jin, L., & Li, D. (2007). A switching vector median filter based on the cielab color space for color image restoration. Signal Processing, 87(6), 1345–1354.

    Article  MATH  Google Scholar 

  12. Morillas, S., Gregori, V., & Peris-Fajarnés, G. (2008). Isolating impulsive noise pixels in color images by peer group techniques. Computer Vision and Image Understanding, 110(1), 102–116.

    Article  Google Scholar 

  13. Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842–1849.

    Article  Google Scholar 

  14. Morillas, S. , Gregori, V. , & Hervás, A. (2009). Fuzzy peer groups for reducing mixed gaussian-impulse noise from color images. IEEE Transactions on Image Processing, 18(7), 1452–1466.

    Article  MathSciNet  Google Scholar 

  15. Geng, X., Hu, X., & Xiao, J. (2012). Quaternion switching filter for impulse noise reduction in color image. Signal Processing, 92(1), 150–162.

    Article  Google Scholar 

  16. Jin, L., Liu, H., Xu, X., & Song, E. (2010). Quaternion-based color image filtering for impulsive noise suppression (Vol. 19, pp. 043003–043003).

  17. Jin, L., Liu, H., Xu, X., & Song, E. (2011). Color impulsive noise removal based on quaternion representation and directional vector order-statistics. Signal Processing, 91(5), 1249–1261.

    Article  Google Scholar 

  18. Lukac, R. (2003). Adaptive vector median filtering. Pattern Recognition Letters, 24(12), 1889–1899.

    Article  Google Scholar 

  19. Smolka, B., & Chydzinski, A. (2005). Fast detection and impulsive noise removal in color images. Real-Time Imaging, 11(5), 389–402.

    Article  Google Scholar 

  20. Celebi, M. E., & Aslandogan, Y. A. (2008). Robust switching vector median filter for impulsive noise removal. Journal of Electronic Imaging, 17(4), 043006–043006.

    Article  Google Scholar 

  21. Jin, L., Zhu, Z., Xu, X., & Li, X. (2016). Two-stage quaternion switching vector filter for color impulse noise removal. Signal Processing, 128, 171–185.

    Article  Google Scholar 

  22. Wang, G., Liu, Y., & Zhao, T. (2014). A quaternion-based switching filter for colour image denoising. Signal Processing, 102(9), 216–225.

    Article  Google Scholar 

  23. Subakan, Ö.N., & Vemuri, B.C. (2011). A quaternion framework for color image smoothing and segmentation. International Journal of Computer Vision, 91(3), 233–250.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tang, K., Astola, J., & Neuvo, Y. (1995). Nonlinear multivariate image filtering techniques. IEEE Transactions on Image Processing, 4(6), 788–798.

    Article  Google Scholar 

  25. Estola, K.-P., & Suoranta, R. (1994). Hybrid multivariate marginal median filters. In 1994 IEEE International Symposium on Circuits and Systems, 1994. ISCAS’94, (Vol. 6 pp. 145–148): IEEE.

  26. Morillas, S., Gregori, V., & Sapena, A. (2011). Adaptive marginal median filter for colour images. Sensors, 11(3), 3205–3213.

    Article  Google Scholar 

  27. Morillas, S., & Gregori, V. (2011). Robustifying vector median filter. Sensors, 11(8), 8115–8126.

    Article  Google Scholar 

  28. Astola, J., Haavisto, P., & Neuvo, Y. (1990). Vector median filters. Proceedings of the IEEE, 78(4), 678–689.

    Article  Google Scholar 

  29. Trahanias, P., & Venetsanopoulos, A. (1993). Vector directional filters-a new class of multichannel image processing filters. IEEE Transactions on Image Processing, 2(4), 528–534.

    Article  Google Scholar 

  30. Trahanias, P.E., Karakos, D., & Venetsanopoulos, A.N. (1996). Directional processing of color images: theory and experimental results. IEEE Transactions on Image Processing, 5(6), 868–880.

    Article  Google Scholar 

  31. Celebi, M.E. (2009). Distance measures for reduced ordering-based vector filters, Image Processing. IET, 3 (5), 249–260.

    Google Scholar 

  32. Kubota, R., & Suetake, N. (2011). Random-valued impulse noise removal based on component-wise noise detector with auto-tuning function and vector median interpolation. Journal of the Franklin Institute, 348(9), 2523–2538.

    Article  MATH  Google Scholar 

  33. Barni, M., & Cappellini, V. (1998). On the computational complexity of multivariate median filters. Signal processing, 71(1), 45–54.

    Article  MATH  Google Scholar 

  34. Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 27(1), 13–18.

    Article  Google Scholar 

  35. Weiss, B. (2006). Fast median and bilateral filtering. In ACM Transactions on Graphics (TOG), (Vol. 25 pp. 519–526): ACM.

  36. Perreault, S., & Hébert, P. (2007). Median filtering in constant time. IEEE Transactions on Image Processing, 16(9), 2389–2394.

    Article  MathSciNet  Google Scholar 

  37. Wirth, N. (1978). Algorithms + Data Structures = Programs. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Guangdong Province under Grant No.S2013040012898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhong.

Appendix:

Appendix:

Theorem 1

Let {z 1 ,..,z m ,...,z N } represents an ordered set with z i ∈R and N is an odd integer(>1), such that z m (m=(N+1)/2) is the median of the set. The following inequation holds for any z l from the set :

$$ \sum\limits_{j=1}^{N}{\mid z_{m}-z_{j}\mid} \leq \sum\limits_{j=1}^{N}{ \mid z_{l}-z_{j} \mid} $$
(15)

Proof

When l = m, two sides of (15) is obviously identical.

When l<m, the left side of (15) becomes

$$\begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N}{\mid z_{m}-z_{j}\mid} &=& \sum\limits_{j=1}^{l}{\mid z_{m}-z_{j}\mid} +\sum\limits_{j=l+1}^{m}{\mid z_{m}-z_{j}\mid} \\&&+\sum\limits_{j=m+1}^{N}{\mid z_{m}-z_{j}\mid} \end{array} $$
(16)

The right side of (15) becomes

$$\begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{N}{ \mid z_{l}-z_{j} \mid} &=& \sum\limits_{j=1}^{l}{\mid z_{l}-z_{j}\mid} +\sum\limits_{j=l+1}^{m}{\mid z_{l}-z_{j}\mid}\\&& +\sum\limits_{j=m+1}^{N}{\mid z_{l}-z_{j}\mid} \\ &=& \sum\limits_{j=1}^{l}{\mid z_{l}-z_{j}\mid} +\sum\limits_{j=l+1}^{m}{\mid z_{l}-z_{j}\mid}\\&& +\sum\limits_{j=m+1}^{N}{\mid z_{l}-z_{m}\mid} +\sum\limits_{j=m+1}^{N}{\mid z_{m}-z_{j}\mid} \\ &= & \sum\limits_{j=1}^{l}{\mid z_{l}-z_{j}\mid} +\sum\limits_{j=l+1}^{m}{\mid z_{l}-z_{j}\mid}\\&&+ (N-m)\mid z_{l}-z_{m}\mid\ +\sum\limits_{j=m+1}^{N}{\mid z_{m}-z_{j}\mid} \\ &=& \sum\limits_{j=1}^{l}{\{ \mid z_{l}-z_{j}\mid+\mid z_{l}-z_{m}\mid\}} \\&&+(N-m-l)\mid z_{l}-z_{m}\mid\\&& +\sum\limits_{j=l+1}^{m}{\mid z_{l}-z_{j}\mid}+ \sum\limits_{j=m+1}^{N}{\mid z_{m}-z_{j}\mid} \end{array} $$
$$\begin{array}{@{}rcl@{}} {\kern55pt}&=& \sum\limits_{j=1}^{l}{\mid z_{m}-z_{j}\mid}+(N-m-l)\mid z_{l}-z_{m}\mid\\ &&+\sum\limits_{j=l+1}^{m}{\mid z_{l}-z_{j}\mid}+ \sum\limits_{j=m+1}^{N}{\mid z_{m}-z_{j}\mid} \end{array} $$
(17)

Using these substitution (16) and (17), some identical items of two sides of (15) are canceled

$$ \sum\limits_{j=l+1}^{m}{\mid z_{m}\!-z_{j}\mid} \leq (N-m-l)\mid z_{l}-z_{m}\mid\ \!+\sum\limits_{j=l+1}^{m}{\mid z_{l}-z_{j}\mid} $$
(18)

The right side of (18) becomes

$$\begin{array}{@{}rcl@{}} \sum\limits_{j=l+1}^{m-1}{\mid z_{l}\,-\,z_{m}\mid} \,+\,\sum\limits_{j=l+1}^{m}{\mid z_{l}\,-\,z_{j}\mid} &\!\geq\!& \sum\limits_{j=l+1}^{m}{\mid z_{m}\,-\,z_{j}\mid}\\ &\!\geq\!& \sum\limits_{j=l+1}^{m}{\mid z_{m}\,-\,z_{j}\mid} \end{array} $$
(19)

Hence, the inequality (15) is proved on the condition of \(l\!{\kern -.5pt}<\!m\).

When l>m , set y i =−z i , we can get another ordered set {−y 1,..,−y m ,..,−y N } and have

$$ \sum\limits_{j=1}^{N}{\mid z_{m}-z_{j}\mid} = \sum\limits_{j=1}^{N}{\mid y_{N-l+1}-y_{j}\mid} $$
(20)

According to the proof on the condition of l<m, we know that (Nl+1)<m on the condition l>m. We have

$$ \sum\limits_{j=1}^{N}{\mid y_{N-l+1}-y_{j}\mid} \geq \sum\limits_{j=1}^{N}{\mid y_{m}-y_{j}\mid} =\sum\limits_{j=1}^{N}{\mid z_{m}-z_{j}\mid} $$
(21)

So we have \( {\sum }_{j=1}^{N}{\mid z_{m}-z_{j}\mid } \leq {\sum }_{j=1}^{N}{\mid z_{m}-z_{j}\mid } \) when l>m. This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Ibrahim, M.T., Zhang, Y. et al. Hybrid Vector Filters based on Marginal Ordering for Impulsive Noise Suppression in Color Images. J Sign Process Syst 89, 379–394 (2017). https://doi.org/10.1007/s11265-016-1208-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1208-4

Keywords

Navigation