Skip to main content
Log in

Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: response to soil and taxonomy and effects on decomposition rates

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The Brazilian cerrado occurs interspersed with the semi-deciduous seasonal forest, and soil fertility is considered as the main determinant of the abrupt transitions between both vegetation types. We aimed to study patterns across chemical traits of green leaves in 121 cerrado and seasonal forest woody species from southeastern Brazil, their response to soil nutrient status, and their effects on decomposition rates. We compared leaf traits of both cerrado and forest species and constructed multilevel models to account for partitioning of variance in each trait. We calculated the community-weighted mean of each trait to assess their response to soil nutrient status and their effects on decomposition rates of standard plant material. Most of the traits were significantly correlated among themselves, with cerrado species having lower nutrient concentrations than the seasonal forest. Taxonomy accounted for 52 % of the total variance in leaf traits, whereas vegetation type accounted for 19 %. All leaf traits but leaf manganese and aluminium concentrations were significantly related to soil properties. Decomposition rates were affected indirectly by soil features through its effects on leaf traits. Contrary to the expected, the higher the leaf nitrogen concentration in the surrounding litter, the lower the decomposition rate. Even with a large effect of taxonomy on leaf nutrient-related traits, soil exerted an important role on the chemical traits. Strategies of both cerrado and seasonal forest species were carried out through multi-element control of soil on leaf nutrient composition. The effect of such different strategies on functioning was, however, less prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archibold OW (1995) Ecology of world vegetation. Chapman and Hall, London

    Book  Google Scholar 

  • Asner GP, Martin RE (2011) Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytol 189:999–1012

    Article  PubMed  Google Scholar 

  • Asner GA, Martin RE, Suhaili AB (2012) Sources of canopy chemical and spectral diversity in lowland Bornean Forest. Ecosystems 15:504–517

    Article  CAS  Google Scholar 

  • Austin AT, Méndez MS, Ballaré CL (2016) Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci USA 113:4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker NR, Allison SD (2015) Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate. Ecology 96:1994–2003

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Batalha MA, Mantovani W (1999) Chaves de identificação das espécies vegetais vasculares baseada em caracteres vegetativos para a ARIE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, SP). Revista do Instituto Florestal 11:137–158

    Google Scholar 

  • Batalha MA, Aragaki S, Mantovani W (1998) Chave de identificação das espécies vasculares do cerrado em Emas (Pirassununga, SP) baseada em caracteres vegetativos. Boletim de Botânica da Universidade de São Paulo 17:85–108

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B and Walker S (2014) _lme4: Linear mixed-effects models using Eigen and S4_. R package version 1.1–7. http://CRAN.R-project.org/package=lme4>

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55:321–336

    Article  CAS  PubMed  Google Scholar 

  • Catalán TP, Lardies MA, Bozinovic F (2008) Food selection and nutritional ecology of woodlice in Central Chile. Physiol Entomol 33:89–94

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allinson SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakoy E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Coutinho LM (1978) O conceito de cerrado. Revta Brasil Bot 1:17–23

    Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota. Springer, Berlin, pp 82–105

    Chapter  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton University Press, Princeton

    Book  Google Scholar 

  • Delgado-Baquerizo M, García-Placios P, Milla R, Gallardo A, Maestre FT (2015) Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality. Soil Biol Biochem 81:134–142

    Article  CAS  Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinburgh J Bot 633:119–130

    Article  Google Scholar 

  • Embrapa (2012) Manual de métodos de análise de solos. Embrapa, Brasília

    Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer, Sunderland

    Google Scholar 

  • Fyllas NM, Patiño S, Baker TR, Nardoto GB, Martinelly LA, Quesada CA, Paiva R, Schwarts M, Horna V, Mercado LM, Santos A, Arroyo L, Jiménez EM, Luizão FJ, Neill DA, Silva N, Prieto A, Rudas A, Silveira M, Vieira ICG, Lopez-Gonzales G, Malhi Y, Phillips OL, Lloyd J (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Garten CT (1976) Correlations between concentrations of elements in plants. Nature 261:686–688

    Article  CAS  Google Scholar 

  • Garten CT (1978) Multivariate perspectives on the ecology of plant mineral element composition. Am Nat 112:533–544

    Article  CAS  Google Scholar 

  • Goodland R, Pollard R (1973) The Brazilian cerrado vegetation: a fertility gradient. J Ecol 61:219–224

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 982:1169–1194

    Article  Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Han WX, Fang JY, Reich PB, Woodward I, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796

    Article  CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  Google Scholar 

  • Haridassan M (1982) Aluminum accumulation by some cerrado native species of central Brazil. Plant Soil 65:265–273

    Article  Google Scholar 

  • Harrell Jr FE, Dupont C (2014) Hmisc: Harrell miscellaneous. R Foundation for statistical computing, Vienna. http://CRAN.R-project.org/package=Hmisc

  • Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965

    Article  PubMed  Google Scholar 

  • He M, Dijkstra FA, Zhang K, Tan H, Zhao Y, Li X (2016) Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant Soil 398:339–350

    Article  CAS  Google Scholar 

  • Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  • Hunke P, Mueller EN, Schröder B, Zeilofer P (2015) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8:1154–1180

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389

    Article  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

    PubMed  Google Scholar 

  • Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075

    Article  Google Scholar 

  • King JY, Brandt LA, Adair EC (2012) Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 111:57–81

    Article  Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde. Gruyter, Berlin

    Google Scholar 

  • Krebs CJ (1998) Ecological methodology. Harper Collins, New York

    Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lambers H, Ahmedi I, Berkowitz O, Dunne C, Finnegan PM, Hardy GESJ, Jost R, Laliberté E, Pearse SJ, Teste FP (2013) Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. Conserv Physiol 1:1–21. doi:10.1093/conphys/cot010

    Article  Google Scholar 

  • Lambers HL, Hayes PE, Laliberté E, Oliveira RS, Turner BL (2014) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90

    Article  PubMed  Google Scholar 

  • Lemos-Filho JP, Barros CFA, Dantas GPM, Dias LG, Mendes RS (2010) Spatial and temporal variability of canopy cover and understory light in a Cerrado of Southern Brazil. Bra J Biol 70:19–24

    Article  CAS  Google Scholar 

  • Metali F, Salim KA, Tennakoon K, Burslem DFRP (2015) Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements. New Phytol 205:280–292

    Article  CAS  PubMed  Google Scholar 

  • Miatto RC, Wright IJ, Batalha MA (2016) Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant Soil 404:13–33

    Article  CAS  Google Scholar 

  • Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R Foundation for Statistical Computing, Vienna. http://CRAN.R-project.org/package=vegan

  • Paiva AO, Silva LCR, Haridasan M (2015) Productivity-efficiency tradeoffs in tropical gallery forest- savanna transitions: linking plant and soil processes through litter input and composition. Plant Ecol 216:775–787

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, Vos AC, Buchmann N, Funes G, Quétier F, Hodgson CJG, Thompson K, Morgan HD, Steege H, Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Powers JS, Salute S (2011) Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant Soil 346:245–257

    Article  CAS  Google Scholar 

  • Quadros AF, Zimmer M, Araujo PB, Kray JG (2014) Litter traits and palatability to detritivores: a case study across bio-geographical boundaries. Nauplius 22:103–111

    Article  Google Scholar 

  • Reich PB (2005) Global biogeography of plant chemistry: filling in the blanks. New Phytol 168:263–266

    Article  CAS  PubMed  Google Scholar 

  • Rosseel Y (2012) lavaan: an R Package for Structural Equation Modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semi-deciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Silva DM (2013) Ecologia do fogo e diversidade funcional em comunidades vegetais de cerrado no Parque Nacional das Emas. Dissertation, Federal University of São Carlos

  • SMA. Secretaria de Estado do Meio Ambiente (1997) Cerrado: bases para conservação e uso sustentável das áreas de cerrado do estado de São Paulo. SMA, São Paulo

    Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy. USDA, Washington

    Google Scholar 

  • Soma K, Saitô T (1983) Ecological studies of soil organisms with references to the decomposition of pine needles II. Litter feeding and breakdown by the woodlouse Porcellio scaber. Plant Soil 75:139–151

    Article  Google Scholar 

  • Souza MC, Bueno CP, Morellato LPC, Habermann G (2015) Ecological strateties of Al-accumulatin and non-accumulatin functional groups from cerrado sensu stricto. Anais da Academia Brasileira de Ciencia. doi:10.1590/0001-3765201520140222

    Google Scholar 

  • Sutherland WJ (2006) Ecological census techniques. Cambridge University, Cambridge

    Book  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Townsend AR, Cleveland CC, Houlton BZ, CB Caroline, White JWC (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Env 9:9–17

    Article  Google Scholar 

  • Valenti MW, Cianciaruso MV, Batalha MA (2008) Seasonality of litterfall and leaf decomposition in a cerrado site. Braz J Biol 68:459–465

    Article  CAS  PubMed  Google Scholar 

  • Viani RA, Rodrigues RR, Dawson TE, Lambers H, Oliveira RS (2014) Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. Perspect Plant Ecol Evol Syst 16:64–74

    Article  Google Scholar 

  • Vourlitis GL, Lobo FA, Lawrence S, Holt K, Zappia A, Pinto OB Jr, Nogueira JS (2014) Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecol 215:963–975. doi:10.1007/s11258-014-0348-5

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between above-ground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Warman L, Bradford MG, Moles AT (2013) A broad approach to abrupt boundaries: looking beyond the boundary at soil attributes within and across tropical vegetation types. PLoS ONE 8:e60789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Broadley MR, Jansen PJW, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • Westoby M, Leishman MR, Lord JM (1995) On misinterpreting the ‘phylogenetic correction’. J Ecol 83:531–534

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Evol Syst 33:125–159

    Article  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Xing W, Wu H, Shi Q, Hao B, Liu H, Wang Z, Liu G (2015) Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China). Sci Rep 5:10186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhang SB, Zhan JL, Slik JWF (2012) Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Glob Ecol Biogeogr 21:809–818

    Article  Google Scholar 

  • Zhao N, Yu G, He N, Wang Q, Guo D, Zhang X, Wang R, Xu Z, Jiao Cuicui, Li N, Jia Y (2016) Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr 25:359–367

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the São Paulo Research Foundation (Fapesp, grant 2012/18295-4) and the Coordination for the Improvement of Higher Education Personnel (Capes, grant BEX 12105/13-9) for the scholarships granted to RCM; the National Council for Scientific and Technological Development, for financial support and scholarship granted to MAB (CNPq, grant 305912/2013-5); the São Paulo Forestry Institute, for the research permit; the Vaçununga State Park staff, for logistical assistance; M Groppo and WM Mantovani, for help with species identification; GH Carvalho, for suggesting the tea bag method; the Tea Bag Team, for help with the decomposition rate calculation; N Abe, ALS Albino, AL Braga, E Carmargo, KR Coelho, P Dodonov, JR Freitas, CS Gonçalves, R. Grazziano, DT Gregolin, LA Joaquim, MB Leite, WB Nascimento, LV Nóbrega, BA Severian, and CB Zanelli, for help with field work; and MC Scalon for revising a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Carolina Miatto.

Additional information

Communicated by William E. Rogers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miatto, R.C., Batalha, M.A. Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: response to soil and taxonomy and effects on decomposition rates. Plant Ecol 217, 1467–1479 (2016). https://doi.org/10.1007/s11258-016-0658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0658-x

Keywords

Navigation