Skip to main content

Advertisement

Log in

Mycorrhizal fungi affect plant growth: experimental evidence comparing native and invasive hosts in the context of forest fragmentation

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Forest fragmentation and biological invasions modify plant–mycorrhizal fungal interactions, but how these variations affect native and invasive plant vegetative and reproductive growth in a fragmented forest remain unknown. To test the effects of soil fungi from different forest fragment sizes on native and invasive plants, we conducted a greenhouse factorial experiment combining soil source (i.e., small and large forest fragments) and fungicide application (with and without fungicide) on two ruderal congeneric Euphorbia (E. acerensis and E. dentata, native and invasive, respectively). Soil fungi from small forest fragments promoted lower rates of mycorrhizal colonization than soil from large forest fragments in both plant species. In general, the source of soil fungi had no effect on vegetative and reproductive growth of both plant species. Fungicide application positively affected plant height and dry mass of the native host, while the fungicide application negatively affected height and neutrally affected growth of the invasive plant species. Reproductive traits were in general positively affected by fungicide application, although in some cases, they were dependent on soil source. Forest fragmentation might promote changes in soil conditions that negatively affect mycorrhizal colonization at levels without functional consequences for plant growth. However, landscape modifications that contribute to a more severe reduction in Arbuscular Mycorrhizal (AM) fungal colonization might certainly have important consequences on native and invasive plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Aguilar-Chama A, Guevara R (2012) Mycorrhizal colonization does not affect tolerance to defoliation of an annual herb in different light availability and soil fertility treatments but increases flower size in light-rich environments. Oecologia 168:131–139

    Article  PubMed  Google Scholar 

  • Bates D & Sakar D (2007) lme4: linear mixed-effects models using S4 classes. R package version 0.9975-11. Available from http://www.r-project.org/

  • Becklin KM, Gamez G, Uelk B, Raguso R, Galen C (2011) Soil fungal effects on floral signals, rewards, and aboveground interactions in an alpine pollination web. Am J Bot 98:1299–1308

    Article  PubMed  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis, part 3, chemical methods-SSSA book series no. 5. Soil Science Society of America, Madison, pp 1085–1121

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T & Malajczuk N (1996) Working with mycorrhizal in forestry and agriculture. ACIAR Monograph 32.

  • Cahill JF, Elle E, Smith GR, Shore BH (2008) Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89:1791-180

    Google Scholar 

  • Callaway RM, Newingham B, Zabinski CA, Mahall BE (2001) Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbors. Ecol Lett 4:1–5

    Article  Google Scholar 

  • Chagnon P-L, Bradley RL, Maherali H, Klironomos J (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-Fir forests. Ecol Appl 5:74–86

    Article  Google Scholar 

  • Claridge K, Franklin SB (2002) Compensation and plasticity in an invasive plant species. Biol Invasions 4:339–347

    Article  Google Scholar 

  • Collinge SK (2009) Ecology of fragmented landscapes. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter SH, Morgan HD, van der Heijden MGA et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Deguchi S, Uozumi S, Touno E, Kaneko M, Tawaraya K (2012) Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Soil Sci Plant Nutr 58:169–172

    Article  CAS  Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Douglas et al (2010) Variation in arthropod abundance in barley under varying sowing regimes. Agric Ecosyst Environ 135:127–131

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Continuous response functions for quantifying the strength of edge effects. J Appl Ecol 43:527–536

    Article  Google Scholar 

  • Gagnon PR, Bruna E, Rubim P, Darrigo MR, Littell RC, Uriarte M, Kress WJ (2011) Growth of an understory herb is chronically reduced in Amazonian forest fragments. Biol Conserv 144:830–835

    Article  Google Scholar 

  • Gange AC, Smith AK (2005) Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. Ecol Entomol 30:600–606

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Grilli G, Urcelay C, Galetto L (2012) Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol 213:155–165

    Article  Google Scholar 

  • Grilli G, Urcelay C, Galetto L (2013) Linking mycorrhizal fungi and soil nutrients to vegetative and reproductive ruderal plant development in a fragmented forest at central Argentina. Forest Ecol Manag 310:442–449

    Article  Google Scholar 

  • Gross N, Le Bagousse-Pinguet Y, Liancourt P, Urcelay C, Catherine R, Lavorel S (2010) Trait-mediated effect of arbuscular mycorrhiza on the competitive effect and response of a monopolistic species. Funct Ecol 24:1122–1132

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244:319–331

    Article  CAS  Google Scholar 

  • Hawkes CV (2007) Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am Nat 170:832–843

    Article  PubMed  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Inderjit, van der Putten WH (2010) Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 25:512–519

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Johnson D, Ijdo M, Genney DR, Anderson IC, Alexander IJ (2005) How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? J Exp Bot 56:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088

    Article  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Koide RT (2010) Mycorrhizal symbiosis and plant reproduction. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Netherlands, pp 297–320

    Chapter  Google Scholar 

  • Koorem K, Saks Ü, Sõber V, Uibopuu A, Öpik M, Zobel M, Moora M (2012) Effects of arbuscular mycorrhiza on community composition and seedling recruitment in temperate forest understory. Basic Appl Ecol 13:663–672

    Article  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. SSSA book series, vol. 5. Soil Science Society of America, Madison, pp 869–919

    Google Scholar 

  • Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Cons 117:215–226

    Article  Google Scholar 

  • Laurance WF (2002) Hyperdynamism in fragmented habitats. J Veg Sci 13:595–602

    Article  Google Scholar 

  • Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33:399–408

    Article  Google Scholar 

  • Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives-a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? a meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  CAS  PubMed  Google Scholar 

  • Lloret F, Medail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE (2005) Species attributes and invasion success by alien plants on Mediterranean islands. J Ecol 93:512–520

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2014) Unraveling the dark septate endophyte functions: insights from the Arabidopsis model. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer India, New Delhi, pp 115–141

    Chapter  Google Scholar 

  • Mangan SA, Eom A-H, Adler GH, Yavitt JB, Herre EA (2004) Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687–700

    Article  PubMed  Google Scholar 

  • McCain KNS, Wilson GWT, Blair JM (2011) Mycorrhizal suppression alters plant productivity and forb establishment in a grass-dominated prairie restoration. Plant Ecol 212:1675–1685

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Meziane D, Shipley B (1999) Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct Ecol 13:611–622

    Article  Google Scholar 

  • Moora M, Öpik M, Sen R, Zobel M (2004) Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct Ecol 18:554–562

    Article  Google Scholar 

  • Mulvaney RL (1996) Nitrogen—inorganic forms. In: Sparks DL, Page AKL, Helmke PA, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (eds) Methods of soil analysis, part 3: chemical methods. Soil Science Society of America, Madison, pp 1123–1184

    Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Pérez M, Urcelay C (2009) Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza 19:517–523

    Article  PubMed  Google Scholar 

  • Perryman SAM, Gladders P, Fitt BDL (2009) Autumn sowing increases severity of pasmo (Mycosphaerella linicola) on linseed in the UK. Annals Appl Biol 154:19–32

    Article  Google Scholar 

  • Philip LJ, Posluszny U, Klironomos JN (2001) The influence of mycorrhizal colonization on the vegetative growth and sexual reproductive potential of Lythrum salicaria L. Can J Bot 79:381–388

    Google Scholar 

  • Pizano C, Mangan SA, Graham JH, Kitajima K (2014) Habitat-specific positive and negative effects of soil biota on seedling growth in a fragmented tropical montane landscape. Oikos 123:846–856

    Article  Google Scholar 

  • Poulton JL, Koide RT, Stephenson AG (2001) Effects of mycorrhizal infection, soil phosphorus availability and fruit production on the male function in two cultivars of Lycopersicon esculentum. Plant Cell Environ 24:841–849

    Article  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Ann Rev Ecol Evol S 40:699–715

    Article  Google Scholar 

  • Rinaudo V, Bàrberi P, Giovannetti M, van der Heijden MGA (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7–20

    Article  CAS  Google Scholar 

  • R Core Development Team 2010 R: a language and environment for statistical computing. http://www.R-project.org

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Great Britain

    Google Scholar 

  • Smith MD, Hartnett DC, Rice CW (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946

    Article  CAS  Google Scholar 

  • Subils R (1977) Las especies de Euphorbia de la República Argentina. Kurtziana 10:83–248

    Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Urcelay C, Tecco PA, Pérez M, Grilli G, Longo MS, Battistella R (2011) Mycorrhizal status and responsiveness of early successional communities from chaquean region in central Argentina. In: Pagano M (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science, New York, pp 147–163

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Varga S (2010) Review. Effects of arbuscular mycorrhizas on reproductive traits in sexually dimorphic plants. Span J Agric Res 8:11–24

    Article  Google Scholar 

  • Veiga RSL, Jansa J, Frossard E, van der Heijden MGA (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6:e27825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veresoglou SD, Menexes G, Rillig MC (2012) Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 22:227–235

    Article  PubMed  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA & Smith GM (2009) mixed effects models and extensions in ecology with R. Springer

Download references

Acknowledgments

We thank Julia Galetto for text editing and English advice, Secretaría de Ciencia y Técnica (Universidad Nacional de Córdoba) and Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for financial support. CU and LG are researchers in CONICET, and MSL and GG are fellows of the same institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grilli.

Additional information

Communicated by G. Kernaghan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11258_2014_410_MOESM1_ESM.tif

Fig. S1. Soil nutrients (i.e., phosphorus, nitrate and ammonia) in soil of small and large forest fragments (i.e., 3 small and 3 large; n = 6). (TIFF 88 kb)

11258_2014_410_MOESM2_ESM.doc

Table S2. GLMM outputs of soil nutrients in soil of forest fragments (i.e., 3 small and 3 large; n = 6). P value indicates the statistical significance of fitting models with and without fixed factor “Forest Size.” (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilli, G., Urcelay, C., Longo, M.S. et al. Mycorrhizal fungi affect plant growth: experimental evidence comparing native and invasive hosts in the context of forest fragmentation. Plant Ecol 215, 1513–1525 (2014). https://doi.org/10.1007/s11258-014-0410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0410-3

Keywords

Navigation