Skip to main content

Advertisement

Log in

Effects of warming on root diameter, distribution, and longevity in an alpine meadow

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Roots form one of the most important carbon (C) pools in alpine ecosystems. Uncertainty about the effects of warming on root dynamics limits our ability to predict how C will transfer between biological and atmospheric pools in alpine regions under global warming. We used a minirhizotron technique to gain a better understanding of the response of alpine plant roots to warming. We looked for effects on root diameter, root depth in the soil, and root lifespan under a controlled asymmetrical warming (1.2/1.7 °C during daytime/nighttime) experiment during the growing season of 2009 in an alpine meadow on the northern Tibetan plateau. Roots became smaller in diameter, moved toward the upper soil layers, and showed significantly shorter lifespans in heated (H) than in unheated (UH) plots. Furthermore, in H treatment plots root lifespan was more strongly influenced by the time of root emergence rather than by root diameter. These results provide evidence that alpine plants may respond to climate change by altering their roots so that they are thinner, distributed shallower and turning over faster, suggesting that soil C flow and nutrient cycling would be accelerated resulting from the fast turnover of fine roots under elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison PD (1995) Survival analysis using the SAS system: A practical guide. SAS Institute, Cary

    Google Scholar 

  • Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003) Multiple risk factors in root survivorship: a 4-year study in Concord grape. N Phytol 158:489–501

    Article  Google Scholar 

  • Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC (2009) Linking above-and belowground responses to global change at community and ecosystem scales. Glob Chang Biol 15:914–929

    Article  Google Scholar 

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. N Phytol 147:141–154

    Article  CAS  Google Scholar 

  • Atkinson D (2000) Root characteristics: Why and what to measure. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) Root methods: a handbook. Springer, Heidelberg, pp 1–32

    Chapter  Google Scholar 

  • Baddeley JA, Watson CA (2005) Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant Soil 276:15–22

    Article  CAS  Google Scholar 

  • Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010) Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Chang Biol 16:1306–1316

    Article  Google Scholar 

  • Bai WM, Xia JY, Wan SQ, Zhang WH, Li LH (2012) Day and night warming have different effect on root lifespan. Biogeosciences 9:375–384

    Article  Google Scholar 

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. N Phytol 147:155–169

    Article  CAS  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Bioanal Rev 43:481–529

    Google Scholar 

  • Björk RG, Majdi H, Klemedtsson L, Lewis-Jonsson L, Molau U (2007) Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. N Phytol 176:862–873

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forest. Oecologia 125:389–399

    Article  Google Scholar 

  • Cantor AB (1997) Extending SAS survival analysis techniques for medical research. SAS Institute Cary, North Carolina

    Google Scholar 

  • Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biol Biochem 36:237–243

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR (1985) Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66:564–576

    Article  Google Scholar 

  • Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840

    Article  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc B 34:187–220

    Google Scholar 

  • Duan JC (2012) Studies of effects of climate change and grazing on plant and plant community on the alpine meadow of the Qinghai-Tibetan plateau. Dissertation, Graduate University of Chinese Academy of Sciences.

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. N Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Elmendorf SC, Henry GH, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JH, Day TA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175

    Article  PubMed  Google Scholar 

  • Fierer N, Colamn BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochem Cycles 20:1–10

    Article  Google Scholar 

  • Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K (1998) Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia 114:20–30

    Article  Google Scholar 

  • Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999) Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120:575–581

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. N Phytol 147:13–31

    Article  Google Scholar 

  • De Boeck Hd, Lemmens C, Zavalloni C, Gielen B, Malchair S, Carnol M, Merckx R, Van Den Berge J, Ceulemans R, Nijs I (2008) Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5:585–594

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23:2507–2520

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der LINDEN PJ, Dai X, Maskell K, Johnson C (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker TF, Qin D, Plattner GK, Tignor M., Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM), 1535. Cambridge University Press, Cambridge, and New York, NY, USA.

  • Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344:58–60

    Article  PubMed  CAS  Google Scholar 

  • Johnson MG, Phillips DL, Tingey DT, Storm MJ (2000) Effects of elevated CO2, N-fertilization, and season on survival of ponderosa pine fine roots. Can J For Res 30:220–228

    Article  Google Scholar 

  • Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006) Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. N Phytol 170:345–356

    Article  CAS  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  • Kern CC, Friend AL, Johnson JM-F, Coleman MD (2004) Fine root dynamics in a developing Populus deltoides plantation. Tree Physiol 24:651–660

    Article  PubMed  Google Scholar 

  • Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Glob Chang Biol 14:309–320

    Article  Google Scholar 

  • Li W, Zhou XM (1998) Ecosystems of Qinghai-Tibetan Plateau and approach for their sustainable management. Studies on the Qinghai-Tibetan Plateau Series. Guangdong Science and Technology, Guangzhou

    Google Scholar 

  • Li YN, Wang XQ, Gu S, Fu YL, Du MY, Zhao L, Zhao XQ, Yu GR (2004) Integrated monitoring of alpine vegetation types and its primary production. Acta Geogr Sin 59:40–48

    Google Scholar 

  • Lin X, Zhang Z, Wang S, Hu Y, Xu G, Luo C, Chang X, Duan J, Lin Q, Xu B (2011) Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agric and For Meteorol 151:792–802

    Article  Google Scholar 

  • Lu M, Zhou XH, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738

    Article  PubMed  Google Scholar 

  • Luo YQ (2007) Terrestrial carbon cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Article  Google Scholar 

  • Luo CY, Xu GP, Wang YF, Wang SP, Lin X, Hu YG, Zhang ZH, Chang XF, Duan JC, Su AL (2009) Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biol Biochem 41:2493–2500

    Article  CAS  Google Scholar 

  • Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL (2010) Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Glob Chang Biol 16:1606–1617

    Article  Google Scholar 

  • Majdi H, öhrvik J (2004) Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Glob Chang Biol 10:182–188

    Article  Google Scholar 

  • Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32

    Article  Google Scholar 

  • Natali SM, Schuur EA, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100:488–498

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. N Phytol 162:311–322

    Article  Google Scholar 

  • Phillips DL, Johnson MG, Tingey DT, Catricala CE, Hoyman TL, Nowak RS (2006) Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Glob Chang Biol 12:61–73

    Article  Google Scholar 

  • Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P, Soussana J-F (2013) Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant Soil 364:395–408

    Article  CAS  Google Scholar 

  • Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. N Phytol 147:105–115

    Article  CAS  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical sigificance. J Exp Bot 52:381–401

    Article  PubMed  CAS  Google Scholar 

  • Robinson D, Hodge A, Fitter A (2003) Constraints on the form and function of root systems. Root ecology. Springer, Heidelberg, pp 1–31

    Chapter  Google Scholar 

  • Rustad LE, Fernandez IJ (1998) Soil warming: consequences for foliar litter decay in a spruce-fir forest in Maine, USA. Soil Sci Soc Am J 62:1072–1080

    Article  CAS  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Sackville Hamilton NR, Jones M, Harper JL (1991) The evolution of roots and the problems of analysing their behaviour. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 3–22

    Google Scholar 

  • Shaver GR, Cutler JC (1979) The vertical distribution of live vascular phytomass in cottongrass tussock tundra. Arct Alp Res 11:335–342

    Article  Google Scholar 

  • Shaver G, Chapin F III, Gartner BL (1986) Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol 74:257–278

    Article  Google Scholar 

  • Silberbush M, Barber SA (1983) Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model. Plant Soil 74:93–100

    Article  CAS  Google Scholar 

  • Sistla SA, Rastetter EB, Schimel JP (2014) Responses of tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecol Monogr 84:151–170

    Article  Google Scholar 

  • Sullivan PF, Welker JM (2005) Warming chambers stimulate early season growth of an arctic sedge: results of a minirhizotron field study. Oecologia 142:616–626

    Article  PubMed  Google Scholar 

  • Volder A, Gifford RM, Evans JR (2007) Effects of elevated atmospheric CO2, cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards. Glob Chang Biol 13:1040–1052

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci U S A 103:1342–1346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. N Phytol 162:437–446

    Article  Google Scholar 

  • Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B et al (2012) Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93:2365–2376

    Article  PubMed  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–892

    Article  Google Scholar 

  • Wu YB, Wu J, Deng YC, Tan HC, Du YG, Gu S, Tang YH, Cui XY (2011) Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau. Plant Soil 338:497–510

    Article  CAS  Google Scholar 

  • Wu YB, Deng YC, Zhang J, Wu JB, Tang YH, Cao GM, Zhang FW, Cui XY (2013) Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecol Res 28:493–501

    Article  CAS  Google Scholar 

  • Xu XL, Ouyang H, Cao GM, Pei ZY, Zhou CP (2004) Uptake of organic nitrogen by eight dominant plant species in Kobresia meadows. Nutr Cycl Agroecosys 69:5–10

    Article  CAS  Google Scholar 

  • Xu XL, Ouyang H, Kuzyakov Y, Richter A, Wanek W (2006) Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285:221–231

    Article  CAS  Google Scholar 

  • Xu GP, Hu YG, Wang SP, Zhang ZH, Chang XF, Duan JC, Luo CY, Chao ZG, Su AL, Lin QW (2010) Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan plateau. Plant Ecol 209:257–268

    Article  Google Scholar 

  • Yi XF, Yang YQ (2006) A stable carbon isotopic approach for understanding the CO2 flux at the Haibei Alpine Meadow Ecosystem: a simple model. Ecol Mod 193:796–800

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. N Phytol 147:201–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by grants from the Natural Science Foundation of China (Nos. 31200367 and 41230750) and the Natural Science Foundation of Zhejiang Province (No. LQ12C03001). The work was also sponsored by K.C. Wong Magna Fund of Ningbo University. The authors are grateful for all support provided. We also thank the staff at the Haibei Alpine Meadow Ecosystem Research Station for their help and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Cui.

Additional information

Communicated by L. Biederman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, J., Deng, Y. et al. Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecol 215, 1057–1066 (2014). https://doi.org/10.1007/s11258-014-0364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0364-5

Keywords

Navigation