Skip to main content
Log in

Qualitative Evaluation of Ultra-thin Multi-layer Diamond-Like Carbon Coatings Using Molecular Dynamics Nanoindentation Simulations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Ultra-thin diamond-like carbon (DLC) coatings are used in hard disk drives to protect the intricate magnetic structures from wear and corrosion. The coating on the recording head consists of a hard DLC layer and a silicon (Si) layer that improves adhesion between the DLC layer and the substrate. Damage to this protective coating can expose the magnetic structures to corrosion and compromise the reliability and functionality of the hard disk drive. Hence, it is critical to understand how coating design parameters affect the mechanical properties of these protective DLC coatings. We have used molecular dynamics simulations to determine the hardness and Young’s modulus of the ultra-thin multi-layer protective DLC coating of a recording head as a function of coating design parameters. We have found that hardness and Young’s modulus of the multi-layer coating increase with increasing DLC layer and decreasing Si layer thickness. Furthermore, hardness and Young’s modulus of the multi-layer coating are a function of the sp3 fraction and, thus, the hardness of the DLC layer. In addition, the mismatch between the hardness of the DLC layer and the substrate determines whether plastic deformation occurs in the coating or the substrate, and significantly affects the hardness of the multi-layer protective coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fontana, R., Hetzler, S., Decad, G.: Technology roadmap comparisons for tape, HDD, and NAND flash: Implications for data storage applications. IEEE Trans. Magn. 48, 1692–1696 (2012)

    Article  Google Scholar 

  2. Goglia, P., Berkowitz, J., Hoehn, J., Xidis, A., Stover, L.: Diamond-like carbon applications in high density hard disc recording heads. Diam. Relat. Mater. 10, 271–277 (2001)

    Article  Google Scholar 

  3. Sander, P., Kaiser, U., Altebockwinkel, M., Wiedmann, L., Benninghoven, A., Sah, R., Koidl, P.: Depth profile analysis of hydrogenated carbon layers on silicon by x-ray photoelectron spectroscopy, Auger electron spectroscopy, electron energy-loss spectroscopy, and secondary ion mass spectrometry. J. Vac. Sci. Technol., A 5, 1470–1473 (1987)

    Article  Google Scholar 

  4. Song, D., Kvitek, R., Schnur, D.: Inspection of pole tip diamondlike carbon wear due to heater-induced head-disc contact. J. Appl. Phys. 99, 08N107 (2006)

    Google Scholar 

  5. Oliver, W., Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  6. Archard, J.: Contact and rubbing of flat surface. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  7. Lee, K., Yeo, C., Polycarpou, A.: Nanomechanical property and nanowear measurements for sub-10-nm thick films in magnetic storage. Exp. Mech. 47, 107–121 (2007)

    Article  Google Scholar 

  8. Sui, J., Cai, W.: Mechanical properties and anti-corrosion behavior of the diamond-like carbon films. Surf. Coat. Tech. 201, 1323–1327 (2006)

    Article  Google Scholar 

  9. Beake, B., Lau, S.: Nanotribological and nanomechanical properties of 5-80 nm tetrahedral amorphous carbon films on silicon. Diam. Relat. Mater. 14, 1535–1542 (2005)

    Article  Google Scholar 

  10. Ma, X., Komvopoulos, K., Wan, D., Bogy, D., Kim, Y.: Effects of film thickness and contact load on nanotribological properties of sputtered amorphous carbon thin films. Wear 254, 1010–1018 (2003)

    Article  Google Scholar 

  11. Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)

    Article  Google Scholar 

  12. Hainsworth, S., Page, T.: Mechanical property data for coated systems—the prospects for measuring “coating only” properties using nanoindentation. In: Materials Research Society Symposium Proceedings, vol. 436, pp. 171–176 (1996)

  13. Szlufarska, I.: Atomistic simulations of nanoindentation. Mater. Today 9, 42–50 (2006)

    Article  Google Scholar 

  14. Price, M., Ovcharenko, A., Thangaraj, R., Raeymaekers, B.: Deformation of ultra-thin diamond-like carbon coatings under combined loading on a magnetic recording head. Tribol. Lett. 57(3), 1–9 (2015)

    Google Scholar 

  15. Szlufarska, I., Kalia, R., Nakano, A., Vashishta, P.: Nanoindentation-induced amorphization in silicon carbide. Appl. Phys. Lett. 85, 378–380 (2004)

    Article  Google Scholar 

  16. Szlufarska, I., Kalia, R., Nakano, A., Vashishta, P.: Atomistic mechanisms of amorphization during nanoindentation of SiC: a molecular dynamics study. Phys. Rev. B 71, 174113 (2005)

    Article  Google Scholar 

  17. Szlufarska, I., Kalia, R., Nakano, A., Vashishta, P.: Atomistic processes during nanoindentation of amorphous silicon carbide. Appl. Phys. Lett. 86, 021915 (2005)

    Article  Google Scholar 

  18. Szlufarska, I., Kalia, R., Nakano, A., Vashishta, A.: A molecular dynamics study of nanoindentation of amorphous silicon carbide. J. Appl. Phys. 102, 023509 (2007)

    Article  Google Scholar 

  19. Sinnott, S., Colton, R., White, C., Shenderova, O., Brenner, D., Harrison, J.: Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films. J. Vac. Sci. Technol. A 15, 936–940 (1997)

    Article  Google Scholar 

  20. Wang, N., Komvopoulos, K.: Nanomechanical and friction properties of ultrathin amorphous carbon films studied by molecular dynamics analysis. ASME Conf. Proc. 2010(44199), 393–395 (2010)

    Google Scholar 

  21. Deng, H., Minor, K., Barnard, K.: Comparison of mechanical and tribological properties of permalloy and high moment FeTaN thin films for tape recording heads. IEEE Trans. Magn. 32, 3702–3704 (1996)

    Article  Google Scholar 

  22. Ma, Z., Long, S., Pan, Y., Zhou, Y.: Creep behavior and its influence on the mechanics of electrodeposited nickel films. J. Mater. Sci. Technol. 25, 90–94 (2009)

    Google Scholar 

  23. Frick, C., Clarck, B., Orso, S., Schneider, A., Arzt, E.: Size effect and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008)

    Article  Google Scholar 

  24. Klokholm, E., Aboaf, J.: The saturation magnetostriction of permalloy films. J. Appl. Phys. 52, 2474–2476 (1981)

    Article  Google Scholar 

  25. Gao, G., Mikulski, P., Harrison, J.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)

    Article  Google Scholar 

  26. Baskes, M.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B. 46, 2727–2742 (1992)

    Article  Google Scholar 

  27. Baskes, M., Angelo, J., Bisson, C.: Atomistic calculations of composite interfaces. Model. Simul. Mater. Sci. 2, 505–518 (1999)

    Article  Google Scholar 

  28. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988)

    Article  Google Scholar 

  29. Walsh, P., Omeltchenko, A., Kalia, R., Nakano, A., Vashishta, P., Saini, S.: Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study. Appl. Phys. Lett. 82, 118–120 (2003)

    Article  Google Scholar 

  30. Lide, D.: A survey of carbon–carbon bond lengths. Tetrahedron 17, 125–134 (1962)

    Article  Google Scholar 

  31. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  32. Noreyan, A., Amar, J., Marinescu, I.: Molecular dynamics simulations of nanoindentation of β-SiC with diamond indenter. Mater. Sci. Eng. B 117, 235–240 (2005)

    Article  Google Scholar 

  33. Nair, A., Parker, E., Gaudreau, P., Farkas, D., Kriz, R.: Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int. J. Plast. 24, 2016–2031 (2008)

    Article  Google Scholar 

  34. Kikuchi, N., Kitagawa, M., Sato, A., Kusano, E., Nanto, H., Kinbara, A.: Elastic and plastic energies in sputtered multilayered Ti–TiN films estimated by nanoindentation. Surf. Coat. Technol. 126, 131–135 (2000)

    Article  Google Scholar 

  35. Fang, T., Wu, J.: Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comput. Mater. Sci. 43, 785–790 (2008)

    Article  Google Scholar 

  36. Ma, Z., Long, S., Pan, Y., Zhou, Y.: Creep behavior and its influence on the mechanics of electrodeposited nickel films. J. Mater. Sci. Technol. 25, 90–94 (2009)

    Google Scholar 

  37. Follstaedt, D., Knapp, J., Myers, S.: Mechanical properties of ion-implanted amorphous silicon. J. Mater. Res. 19, 338–346 (2004)

    Article  Google Scholar 

  38. Grill, A.: Diamond-like carbon: state of the art. Diam. Relat. Mater. 8, 428–434 (1999)

    Article  Google Scholar 

  39. Yasui, N., Inaba, H., Furusawa, K., Saito, M., Ohtake, N.: Characterization of head overcoat for 1 Tb/in2 magnetic recording. IEEE Trans. Magn. 45, 805–809 (2009)

    Article  Google Scholar 

  40. Casiraghi, C., Robertson, J., Ferrari, A.: Diamond-like carbon for data and beer storage. Mater. Today 10, 44–53 (2007)

    Article  Google Scholar 

  41. Chen, X., Vlassak, J.: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974–2982 (2001)

    Article  Google Scholar 

  42. Saha, R., Nix, W.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–28 (2002)

    Article  Google Scholar 

  43. Charitidis, C.: Nanomechanical and nanotribological properties of carbon-based thin films: a review. Int. J. Refract. Metals Hard Mater. 28, 51–70 (2010)

    Article  Google Scholar 

  44. Charitidis, C., Logothetidis, S., Gioti, M.: A comparative study of the nanoscratching behavior of amorphous carbon films grown under various deposition conditions. Surf. Coat. Technol. 125, 201–206 (2000)

    Article  Google Scholar 

  45. Li, J.: AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. 11, 173–177 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Western Digital Corporation for their support of this research. The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged. We also acknowledge use of AtomEye [45].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Raeymaekers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, M.R., Ovcharenko, A. & Raeymaekers, B. Qualitative Evaluation of Ultra-thin Multi-layer Diamond-Like Carbon Coatings Using Molecular Dynamics Nanoindentation Simulations. Tribol Lett 62, 3 (2016). https://doi.org/10.1007/s11249-016-0655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0655-1

Keywords

Navigation