Skip to main content
Log in

Thermal Effect on Atomic Friction with Deformable Substrate

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We present a numerical study of the friction force between two contact surfaces as a function of the temperature and shape parameter. We modify the sinusoidal potential to capture surface features. This result is applied to derive an analytical expression for the shape corrugation dependence of static friction force. We calculate the friction force between two contact surfaces as a function of the temperature and shape corrugation. The ensemble of our data is consistently explained by the thermally activated process of the tip on an effective non-sinusoidal potential. Finally, we numerically find two critical temperatures which mark the transition between thermal activation regime and thermal drift regime. The critical temperature dependence of the shape of the potential is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Prandtl, L.: Hypothetical model for the kinetic theory of solid bodies. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  Google Scholar 

  2. Tomlinson, G.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    Google Scholar 

  3. Binning, G., Quate, C., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)

    Article  Google Scholar 

  4. Krylov, S.Y., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermally induced suppression of friction at the atomic scale. Phys. Rev. E 71, 065101 (2005)

    Article  Google Scholar 

  5. Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. 104, 256101 (2010)

    Google Scholar 

  6. Schirmeisen, A., Jansen, L., Fuchs, H.: Tip jump statistics of stick-slip friction. Phys. Rev. B 71, 245403 (2005)

    Article  Google Scholar 

  7. Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84, 125419 (2011)

    Article  Google Scholar 

  8. Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82, 035435 (2010)

    Article  Google Scholar 

  9. Fajardo, O.Y., Mazo, J.J.: Surface defects and temperature on atomic friction. J. Phys. Condens. Matter 23, 355008 (2011)

    Article  Google Scholar 

  10. Kenmoe, G.D., Jiotsa, A.K., Kofane, T.: Stick-slip motion in a driven two nonsinusoidal Remoissenet–Peyrard potential. Physica D 191, 31 (2004)

    Article  Google Scholar 

  11. Furlong, O., Manzi, S., Pereyra, V., Bustos, V., Tysoe, W.: Monte Carlo simulation for Tomlinson sliding models for non-sinusoidal periodic potential. Tribol. Lett. 39, 177 (2010)

    Article  Google Scholar 

  12. Kenmoe, G.D., Kofane, T.: In: Bhushan, B. (ed.) Scanning Probe Microscopy in Nanoscience and Nanotechnology, vol. 2, p. 533. Springer, Heidelberg (2011)

  13. Motchongom-Tingue, M., Kenmoe, G.D., Kofane, T.: Stick-slip motion and static friction in a nonlinear deformable substrate potential. Tribol. Lett. 43, 65 (2011)

    Article  Google Scholar 

  14. Einstein, T.L., Hertz, J., Schrieffer, J.R.: In: Smith, J.R. (ed.) Theory of Chemisorption. Springer, Berlin (1980)

  15. Muscat, J.P.: The role of H–H interaction in the formation of ordered structure on Ni and Pd single cristals. Surf. Sci. 110, 85 (1981)

    Article  Google Scholar 

  16. Johanson, P.K., Hjlemberg, H.: Charge density oscillations around a hygrogen adatom on simple metal surfaces and their importance for adatom–adatom interaction. Surf. Sci. 80, 171 (1979)

    Article  Google Scholar 

  17. Nordlander, P., Holmströn, S.: Indirect electronic interaction between hydrogen atoms adsorbed on metals. Surf. Sci. 159, 443 (1985)

    Article  Google Scholar 

  18. Remoissenet, M., Peyrard, M.: Solitonlike excitations in a one dimensional atomic chain with a nonlinear deformable substrate potential. Phys. Rev. B 26, 2884 (1982)

    Google Scholar 

  19. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical model for atomic friction. Tribol. Lett. 44, 367 (2011)

    Article  Google Scholar 

  20. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  Google Scholar 

  21. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  Google Scholar 

  22. Dong, Y., Perez, D., Gao, H., Martini, A.: Thermal activation in atomic friction: revisiting the theoretical analysis. J. Phys. Condens. Matter 24, 265001 (2012)

    Article  Google Scholar 

  23. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)

    Article  Google Scholar 

  24. Kasdin, N.: Runge–Kutta algorithm for the numerical integration of stochastic differential equations. J. Guid. Control Dyn. 18, 114 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Djuidje Kenmoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenmoe, G.D., Tchaptchet, E.D. & Kofané, T.C. Thermal Effect on Atomic Friction with Deformable Substrate. Tribol Lett 55, 533–542 (2014). https://doi.org/10.1007/s11249-014-0378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0378-0

Keywords

Navigation