Skip to main content
Log in

Transient Heat Conduction Between Rough Sliding Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

When two rough bodies slide against each other, asperities on the opposing surfaces interact with each other, defining a transient contact and heat conduction problem. We represent each body by a Greenwood and Williamson asperity model with a Gaussian height distribution of identical spherical asperities. The heat transfer during a typical asperity interaction is analyzed, and the results are combined with the height distributions to determine the mean heat flux and the mean normal contact pressure as functions of the separation between reference planes in the two surfaces. We find that the effective thermal conductance is an approximately linear function of nominal contact pressure, but it also increases with the square root of the sliding speed and decreases with the 3/4 power of the combined RMS roughness. The results can be used to define an effective thermal contact resistance and division of frictional heat in macroscale (e.g., finite element) models of engineering components, requiring as input only the measured roughness and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(a\) :

Contact radius

\(a_0\) :

Maximum contact radius

\(A_{{\mathrm{nom}}}\) :

Nominal contact area

\(b\) :

Nearest approach

\(b_0\) :

Maximum value of \(b\) for contact

\(d\) :

Maximum interference

\(d_0\) :

See Eq. (5)

\(D\) :

Fractal dimension of the profile

\(E^{{*}}\) :

Composite elastic modulus

\(h_i\) :

Asperity height above a datum

\(h_0\) :

Mean plane separation

\(k\) :

Thermal diffusivity

\(K\) :

Thermal conductivity

\(m_{0,2,4}\) :

Moments of the power spectral density

\(N_i\) :

Surface density of summits

\(p\) :

Contact pressure

\(P\) :

Normal contact force

\(Pe\) :

Peclet number

\(q\) :

Heat flux per unit area

\(Q\) :

Total heat transfer

\(R_i\) :

Radius of asperity summit

\(R^{{*}}\) :

Composite radius

\(S\) :

Sliding distance

\(t\) :

Time

\(t_0\) :

Half of the duration of contact

\(T_i\) :

Bulk temperatures

\(T_0\) :

Flash temperature

\(\bar{T}_0\) :

Average flash temperature

\(V\) :

Relative velocity

\(x,y\) :

Cartesian coordinates

\(\alpha\) :

Bandwidth parameter

\(\theta\) :

Temperature difference \(T_1-T_2\)

\(\phi _i\) :

Height distribution of asperities

\(\varPhi _i\) :

Probability distribution for asperity interaction

\(\mu\) :

Coefficient of friction

\(\sigma _i\) :

Summit height standard deviation

\(\omega _h\) :

Upper cut-off frequency

\(c\) :

Heat flux due to temperature difference

\(f\) :

Heat generated by friction

\(i=1,2\) :

Bodies 1, 2

nom:

Nominal contact

References

  1. Archard, J.F.: The temperature of rubbing surfaces, Wear 2, 438–455 (1958)

    Google Scholar 

  2. Ling, F.F., Simkins, T.E.: Measurement of pointwise juncture condition of temperature at the interface of two bodies in sliding contact. ASME J. Basic Eng. 85, 481–487 (1963)

    Article  Google Scholar 

  3. Bauzin, J.G., Laraqi, N.: Simultaneous estimation of frictional heat flux and two thermal contact parameters for sliding contacts. Numer. Heat Transf. A Appl. 45, 313–328 (2004)

    Article  Google Scholar 

  4. Persson, B.N.J., Lorenz, B., Volokitin, A.I.: Heat transfer between elastic solids with randomly rough surfaces. Eur. Phys. J. E 31, 3–24 (2010). doi:10.1140/epje/i2010-10543-1

    Article  Google Scholar 

  5. Bush, A.W., Gibson, R.D.: A theoretical investigation of thermal contact conductance. Appl. Energy 5, 11–22 (1979)

    Article  Google Scholar 

  6. Sridhar, M.R., Yovanovich, M.M.: Elastoplastic contact conductance model for isotropic, conforming rough surfaces and comparison with experiments. J. Heat Transf. 118, 3–16 (1996)

    Article  Google Scholar 

  7. Blok, H.: Theoretical study of temperature rise at surfaces of actual contact under oiliness conditions. Inst. Mech. Eng. Gen. Discuss. Lubr. 2, 222–235 (1937)

    Google Scholar 

  8. Jaeger, J.C.: Moving sources of heat and the temperature of sliding contacts. J. Proc. R. Soc. N. S. W. 76, 203–224 (1942)

    Google Scholar 

  9. Bos, J., Moes, H.: Frictional heating of tribological contacts. Trans. ASME J. Tribol. 117, 171–177 (1995)

    Article  Google Scholar 

  10. Gecim, B., Winer, W.O.: Transient temperatures in the vicinity of an asperity contact. Trans. ASME J. Tribol. 107, 333–342 (1985)

    Article  Google Scholar 

  11. Hou, Z.B., Komanduri, R.: General solutions for stationary/moving plane heat source problems in manufacturing and tribology. Int. J. Heat Mass Transf. 43, 1679–1698 (2000)

    Article  Google Scholar 

  12. Smith, E.H., Arnell, R.D.: A new approach to the calculation of flash temperatures in dry, sliding contacts. Tribol. Lett. 52, 407–414 (2013)

    Article  Google Scholar 

  13. Barber, J.R.: The distribution of heat between sliding surfaces. J. Mech. Eng. Sci. 9, 351–354 (1967)

    Article  Google Scholar 

  14. Ling, F.F., Pu, S.: Probable interface temperatures of solids in sliding contact. Wear 7, 23–34 (1964)

    Article  Google Scholar 

  15. Wang, S., Komvopoulos, K.: A fractal theory of the interfacial temperature distribution in the slow sliding regime: part I. Elastic contact and heat transfer analysis. J. Tribol. 116, 812–823 (1994)

    Article  Google Scholar 

  16. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300–319 (1966)

    Article  Google Scholar 

  17. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  18. Carslaw, H.S., Jaeger, J.C.: The Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford (1959)

    Google Scholar 

  19. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 6th edn, pp. 283–289. Wiley, Manchester (2006)

    Google Scholar 

  20. Nayak, P.R.: Random process model of rough surfaces. ASME J. Lubr. Technol. 93, 398–407 (1971)

    Article  Google Scholar 

  21. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107, 37–60 (1986)

    Article  Google Scholar 

  22. McCool, J.I.: Relating profile instrument measurements to the functional performance of rough surfaces. Trans. ASME 109, 264–270 (1987)

    Article  Google Scholar 

  23. Bush, A.W., Gibson, R.D., Keogh, G.P.: The limit of elastic deformation in the contact of rough surfaces. Mech. Res. Commun. 3, 169–174 (1976)

    Article  Google Scholar 

  24. Mikic, B.B.: Thermal contact conductance: theoretical considerations. Int. J. Heat Mass Transf. 17, 205–214 (1974)

    Article  Google Scholar 

  25. Madhusudana, C.V.: Thermal Contact Conductance, 2nd edn, p. 32. Springer, New York (1996)

    Book  Google Scholar 

  26. Paggi, M., Barber, J.R.: Contact conductance of rough surfaces composed of modified RMD patches. Int. J. Heat Mass Transf. 54, 4664–4672 (2011)

    Article  Google Scholar 

  27. Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear 136, 313–327 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Barber.

Appendices

Appendix 1

1.1 Effect of Relative Motion

We consider the case where \(C_2\gg C_1\), so that points on the surface of body 2 can be assumed to remain at temperature \(T_2\) throughout the contact, and for simplicity we assume that \(R_1=R_2=R\)—i.e. the asperities on the two surfaces have the same summit radius \(R\).

A representative point \((x,y)\) on the surface of body 1 will make contact as long as it remains within the appropriate contact circle in Fig. 2a—i.e. if \(\xi ^2+\eta ^2\le a(t)^2\), where \(\xi ,\eta\) and the time-varying contact radius \(a(t)\) are defined in Eqs. (27) respectively. Using these relations, the inequality can be written in terms of \(x,y,t\) as

$$\begin{aligned} \left( x-\frac{Vt}{2}\right) ^2+\left( y-\frac{b}{2} \right) ^2\le \frac{Rd_0}{2}-\frac{V^2t^2}{8}, \end{aligned}$$
(47)

and hence

$$\begin{aligned} \frac{3\tau ^2}{2}-2X\tau +X^2+Y^2-\frac{1}{2}\le 0, \end{aligned}$$
(48)

where we define dimensionless time and coordinates through

$$\begin{aligned} X=\frac{x}{\sqrt{Rd_0}}; \quad Y=\frac{y}{\sqrt{Rd_0}}- \frac{b}{2\sqrt{Rd_0}}; \quad \tau =\frac{t}{t_0}= \frac{Vt}{2\sqrt{Rd_0}}. \end{aligned}$$
(49)

The times \(\tau _1,\tau _2\) at which contact begins and ends at a given point \((X,Y)\) are defined by taking the equality in (48), giving

$$\begin{aligned} \tau _1,\tau _2=\frac{2}{3}\left( X\mp \sqrt{\frac{3}{4}- \frac{X^2}{2}-\frac{3Y^2}{2}}\right) . \end{aligned}$$
(50)

It follows that the period of contact at this point is

$$\begin{aligned} \Delta \tau =\tau _2-\tau _1 =\sqrt{\frac{4}{3}\left( 1-\frac{2X^2}{3}-2Y^2\right) }. \end{aligned}$$
(51)

Notice that by setting \(\Delta \tau =0\), we define the envelope of the contact regions in Fig. 2a, which is

$$\begin{aligned} \frac{2x^2}{3}+2\left( y-\frac{b}{2}\right) ^2=Rd_0, \end{aligned}$$
(52)

using (49). Points outside this ellipse never experience contact. The total heat exchanged per unit area at \((X,Y)\) is given by Eq. (8) with \(C_2\rightarrow \infty\) as

$$\begin{aligned} q=2C_1\theta \sqrt{\frac{\Delta t}{\pi }}=2C_1\theta (Rd_0)^{1/4}\sqrt{\frac{2\Delta \tau }{\pi V}} =\frac{4C_1\theta (Rd_0)^{1/4}}{3^{1/4}\sqrt{\pi V}}\left( 1-\frac{2X^2}{3}-2Y^2\right) ^{1/4} \end{aligned}$$
(53)

and hence the total heat exchange during the interaction is

$$\begin{aligned} Q_c=\int \int \limits _{\mathcal {A}}q(x,y)dxdy=Rd_0 \int \int \limits _{\mathcal {A}}q(X,Y)\text {d}X\text {d}Y, \end{aligned}$$
(54)

where the integration domain \(\mathcal {A}\) comprises the ellipse of Eq. (52). We obtain

$$\begin{aligned} Q_c=\frac{8\root{4} \of {3}C_1\sqrt{\pi }\theta \left( d_0R \right) ^{5/4}}{5\sqrt{V}}=\frac{\root{4} \of {3}C_1\sqrt{2\pi } \theta \left( b_0^2-b^2\right) ^{5/4}}{5\sqrt{V}} , \end{aligned}$$
(55)

which exceeds Eq. (13) [with \(R_1=R_2\)] by a factor of \(\root 4 \of {3}\approx 1.32\).

Appendix 2

1.1 Evaluation of Gaussian Integrals

Consider the integral

$$\begin{aligned} J(\gamma )=\frac{1}{2\pi \sigma _1\sigma _2}\int \limits _{-\infty }^\infty \int \limits _{h_0-h_2}^\infty \exp \left( -\frac{h_1^{2}}{2\sigma _1^{2}}-\frac{h_2^{2}}{2\sigma _2^{2}}\right) (h_1+h_2-h_0)^{\gamma }\text {d}h_1\text {d}h_2. \end{aligned}$$

We define dimensionless parameters

$$\begin{aligned} x_1=\frac{h_1}{\sigma _1\sqrt{2}}; \quad x_2=\frac{h_2}{\sigma _2\sqrt{2}} \end{aligned}$$

and then perform the linear transformation

$$\begin{aligned} \xi =\frac{x_1+\beta x_2}{\sqrt{1+\beta ^2}}; \quad \eta =\frac{\beta x_1-x_2}{\sqrt{1+\beta ^2}}\quad \text{ where }\quad \beta =\frac{\sigma _2}{\sigma _1}. \end{aligned}$$

This preserves the condition

$$\begin{aligned} \xi ^2+\eta ^2=x_1^2+x_2^2 \end{aligned}$$

so that the Jacobean of the transformation is unity. We also have

$$\begin{aligned} h_1+h_2-h_0=(\xi -\hat{h}_0)\sqrt{2(\sigma _1^2+\sigma _2^2)} \quad \text{ where }\quad \hat{h}_0=\frac{h_0}{\sqrt{2(\sigma _1^2+\sigma _2^2)}}, \end{aligned}$$

and the domain of integration in \(J(\gamma )\) is \(\xi >\hat{h}_0\), giving

$$\begin{aligned} J(\gamma )=\frac{[2(\sigma _1^2+\sigma _2^2)]^{\gamma /2}}{\pi } \int \limits _{\hat{h}_0}^\infty \int \limits _{-\infty }^\infty e^{-(\xi ^2+\eta ^2)}(\xi -\hat{h}_0)^{\gamma }\text {d}\eta \text {d}\xi . \end{aligned}$$

The integral with respect to \(\eta\) evaluates to \(\sqrt{\pi }\) so that finally we obtain

$$\begin{aligned} J(\gamma )=\frac{[2(\sigma _1^2+\sigma _2^2)]^{\gamma /2}}{\sqrt{\pi }} I(\hat{h}_0,\gamma ) \end{aligned}$$
(56)

where

$$\begin{aligned} I(\hat{h}_0,\gamma )=\int \limits _{\hat{h}_0}^\infty e^{-\xi ^2}(\xi -\hat{h}_0)^{\gamma }\text {d}\xi =\int \limits _0^\infty e^{-(y+\hat{h}_0)^2}y^{\gamma }\text {d}y, \end{aligned}$$
(57)

writing \(y=\xi -\hat{h}_0\). The integral \(I(\hat{h}_0,\gamma )\) can be evaluated in terms of special functions (for example using Mathematica or Maple) for integer and fractional values of \(\gamma\).

1.2 Frictional Heating

Substituting \(Q_f, \varPhi (b), \phi _1(h_1), \phi _2(h_2)\) from Eqs. (92223) respectively into Eq. (24), we obtain

$$\begin{aligned} Q_f(S)=\frac{SN_1N_2\pi \mu E^{{*}}\sqrt{R_1R_2}}{2\sqrt{2}(R_1+R_2)^2}I_1, \end{aligned}$$
(58)

where

$$\begin{aligned} I_1=\frac{1}{2\pi \sigma _1\sigma _2}\int \limits _{-\infty }^\infty \int \limits _{h_0-h_2}^\infty \int \limits _0^{b_0} \exp \left( -\frac{h_1^{2}}{2 \sigma _1^{2}}-\frac{h_2^{2}}{2\sigma _2^{2}}\right) (b_0^2-b^2)^2\text {d}b\text {d}h_1\text {d}h_2 \end{aligned}$$

Evaluating the integral with respect to \(b\) and substituting for \(b_0\) from (5), we have

$$\begin{aligned} I_1=\frac{8[2(R_1+R_2)]^{5/2}}{15}\,J\left( \frac{5}{2}\right) . \end{aligned}$$

Substituting this result in (58) and using (56) we obtain

$$\begin{aligned} Q_f(S)=\frac{2^{21/4}N_1N_2 \sqrt{\pi }E^{{*}}\sqrt{R_1+R_2}\sqrt{R_1R_2}\mu S\left( \sigma _1^{2}+\sigma _2^{2} \right) ^{5/4}}{15} I\left( \hat{h}_0,\frac{5}{2}\right) . \end{aligned}$$

1.3 Heat Exchange Due to a Temperature Difference

Substituting \(Q_c, \varPhi (b), \phi _1(h_1), \phi _2(h_2)\) from Eqs. (132223) respectively into Eq. (27), we obtain

$$\begin{aligned} Q_c(S)=\frac{2^{7/2}\pi SN_1N_2C_1C_2\theta R^{{*}}}{5(C_1+C_2)(R_1+R_2)\sqrt{\pi V}}\,I_2, \end{aligned}$$

where

$$\begin{aligned} I_2&= \frac{1}{2\pi \sigma _1\sigma _2}\int \limits _{-\infty }^\infty \int \limits _{h_0-h_2}^\infty \int \limits _0^{b_0} \exp \left( -\frac{h_1^{2}}{2\sigma _1^{2}}- \frac{h_2^{2}}{2\sigma _2^{2}} \right) (b_0^2-b^2)^{5/4}\text {d}b\text {d}h_1\text {d}h_2 \\&= \frac{5\pi ^{3/2}[2(R_1+R_2)]^{7/4}}{21\sqrt{2}\Gamma (3/4)^2}J \left( \frac{7}{4}\right) \end{aligned}$$

after evaluating the integral with respect to \(b\). We therefore have

$$\begin{aligned} Q_c(S)=\frac{2^{45/8}\pi ^{3/2}SN_1N_2C_1C_2\theta R_1R_2(\sigma _1^2+\sigma _2^2)^{7/8}}{21 \Gamma (3/4)^2(C_1+C_2)(R_1+R_2)^{1/4}\sqrt{V}}I \left( \hat{h}_0,\frac{7}{4}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Barber, J.R. Transient Heat Conduction Between Rough Sliding Surfaces. Tribol Lett 55, 23–33 (2014). https://doi.org/10.1007/s11249-014-0328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0328-x

Keywords

Navigation