Skip to main content
Log in

Static and Dynamic Slider Air-Bearing Behavior in Heat-Assisted Magnetic Recording Under Thermal Flying Height Control and Laser System-Induced Protrusion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The air bearing’s response to regions of elevated temperature on its bounding surfaces (the slider and disk) may be an important consideration in the head–disk interface design of heat-assisted magnetic recording (HAMR) systems. We implement the general non-isothermal molecular gas lubrication equation into an iterative static solver and dynamic air-bearing solver to evaluate the effect of localized heating of the air-bearing surface (ABS) due to the near-field transducer (NFT). The heat-dissipating components in our simplified HAMR design are the NFT, laser diode, and thermal flying height control (TFC) heater. We investigate the effect of each HAMR slider component on ABS temperature and thermal deformation and the slider’s flying height. The NFT induces a localized thermal spot and protrusion on the larger TFC bulge, and it is the location of maximum temperature. This ABS temperature profile alters the air-bearing pressure distribution, increasing the pressure at the hot NFT location compared with predictions of an isothermal air-bearing solver, so that the center of the pressure acting on the ABS is slightly closer to the trailing edge, thereby decreasing the pitch angle and increasing the minimum flying height. Other researchers have shown that the NFT’s thermal response time may be much faster than its protrusion response time (Xu et al. in IEEE Trans Magn 48:3280–3283, 2012). The slider’s dynamic response to a time-varying NFT thermal spot on the ABS while the combined TFC and NFT induced thermal protrusion remains constant is investigated with our dynamic air-bearing solver. We simulate the slider’s step response to a suddenly applied ABS temperature profile and a pulsed temperature profile that represents laser-on over data zones and laser-off over servo zones. The sudden (step) or rapid (pulse) increase in ABS temperature induces a sudden or rapid increase in pressure at the NFT location, thereby exciting the air bearing’s first pitch mode. For the slider design and simulation conditions used here, the result of the pitch mode excitation is to alter the position of the center of pressure in the slider’s length direction, thereby changing the pitch moment. In response, the pitch angle and minimum flying height change. The step response decays after approximately 0.15 ms. Because the laser duty cycle is much shorter than this response time, a periodic disturbance is predicted for the center of pressure coordinate, pitch angle, and minimum flying height. The peak-to-peak minimum flying height modulations are relatively small (only up to 0.126 nm); more significantly, the time-averaged minimum flying height increases 0.5 nm for the NFT that reached 208 °C compared to simulations of the isothermal ABS at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xu, B., Li, J., Toh, Y., Ye, K., Zhang, J.: Dynamic thermal responses of heat-assisted magnetic recording head in data writing process. IEEE Trans. Magn. 48, 3280–3283 (2012)

    Article  Google Scholar 

  2. Wu, A.Q., Kubota, Y., Klemmer, T., Rausch, T., Peng, C., Peng, Y., Karns, D., Zhu, X., Ding, Y., Chang, E.K., Zhao, Y., Zhou, H., Gao, K., Thiele, J.U., Seigler, M., Ju, G., Gage, E.: HAMR areal density demonstration of 1+ Tbpsi on spinstand. In: The magnetic recording conference (TMRC) 2012. San Jose, CA, USA (2012)

  3. Challener, W., Peng, C., Itagi, A., Karns, D., Peng, W., Peng, Y., Yang, X., Zhu, X., Gokemeijer, N., Hsia, Y.T., Ju, G., Rottmayer, R., Seigler, M.: Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009)

    Article  Google Scholar 

  4. Budaev, B.V., Bogy, D.B.: On the lifetime of plasmonic transducers in heat assisted magnetic recording. J. Appl. Phys. 112, 034512 (2012)

    Article  Google Scholar 

  5. Kryder, M., Gage, E., McDaniel, T., Challener, W., Rottmayer, R., Ju, G., Hsia, Y.T., Erden, M.: Heat assisted magnetic recording. Proc. IEEE 96, 1810–1835 (2008)

    Article  Google Scholar 

  6. Xu, B., Yuan, H., Zhang, J., Yang, J., Ji, R., Chong, T.: Thermal effect on slider flight height in heat assisted magnetic recording. J. Appl. Phys. 103, 07F525 (2008)

    Google Scholar 

  7. Zheng, H., Li, H., Talke, F.E.: Numerical simulation of thermal flying height control sliders in heat-assisted magnetic recording. Microsyst. Technol. 18, 1731–1739 (2012)

    Article  Google Scholar 

  8. Xu, B., Chia, C.W., Zhang, Q., Toh, Y.T., An, C., Vienne, G.: Thermal analysis of heat-assisted magnetic recording optical head with laser diode on slider. Jpn. J. Appl. Phys. 50, 09MA05 (2011)

    Article  Google Scholar 

  9. Xu, B., Toh, Y., Chia, C., Li, J., Zhang, J., Ye, K., An, C.: Relationship between near field optical transducer laser absorption and its efficiency. IEEE Trans. Magn. 48, 1789–1793 (2012)

    Article  Google Scholar 

  10. Liu, N., Bogy, D.B.: Temperature effect on a HDD slider’s flying performance at steady state. Tribol. Lett. 35, 105–112 (2009)

    Article  Google Scholar 

  11. Zhou, W., Wong, C., Liu, B., Yu, S., Hua, W.: Effects of temperature dependent air properties on the performances of a thermal actuated slider. Tribol. Int. 42, 902–910 (2009)

    Article  Google Scholar 

  12. Fukui, S., Kaneko, R.: Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report derivation of a generalized lubrication equation including thermal creep flow. ASME J. Tribol. 110, 253–262 (1988)

    Article  Google Scholar 

  13. Bechtel, J.E., Bogy, D.B.: Heat-assisted magnetic recording air bearing simulations that account for lateral air temperature variation. IEEE Trans. Magn. 47, 2379–2382 (2011)

    Article  Google Scholar 

  14. Stipe, B.C., Strand, T.C., Poon, C.C., Balamane, H., Boone, T.D., Katine, J.A., Li, J.L., Rawat, V., Nemoto, H., Hirotsune, A., Hellwig, O., Ruiz, R., Dobisz, E., Kercher, D.S., Robertson, N., Albrecht, T.R., Terris, B.D.: Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nat. Photonics 4, 484–488 (2010)

    Article  Google Scholar 

  15. Seigler, M., Challener, W.A., Gage, E., Gokemeijer, N., Ju, G., Lu, B., Pelhos, K., Peng, C., Rottmayer, R., Yang, X.: Integrated heat assisted magnetic recording head: design and recording demonstration. IEEE Trans. Magn. 44, 119–124 (2008)

    Article  Google Scholar 

  16. Cetinorgu, E., Baloulas, B., Zabeida, O., Klemberg-Sapieha, J., Martinu, L.: Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering. Appl. Opt. 48, 4536–4544 (2009)

    Article  Google Scholar 

  17. Sone, Y.: Molecular gas dynamics: theory, techniques, and applications. Birkhäuser, Boston (2007)

    Book  Google Scholar 

  18. Liu, C., Lees, L.: Kinetic theory description of plane compressible Couette flow. In: Talbot, L. (ed.) Rarefied gas dynamics, pp. 391–428. Academic Press, New York (1961)

    Google Scholar 

  19. Liu, N., Bogy, D.B.: Particle contamination on a thermal flying-height control slider. Tribol. Lett. 37, 93–97 (2010)

    Article  Google Scholar 

  20. Cercignani, C., Lampis, M., Lorenzani, S.: Flow of a rarefied gas between parallel and almost parallel plates. In: Proceedings of 24th international symposium on rarefied gas dynamics, vol. 762, pp. 719–724. American Institute of Physics, AIP conference proceedings, Melville, NY (2005)

  21. Loyalka, S.: Thermal transpiration in a cylindrical tube. Phys. Fluids 12, 2301–2305 (1969)

    Article  Google Scholar 

  22. Kennard, E.H.: Kinetic theory of gases with an introduction to statistical mechanics. New York: McGraw-Hill (1938)

    Google Scholar 

  23. White, F.M.: Fluid Mechanics, 5 edn. McGraw-Hill, New York (2003)

    Google Scholar 

  24. Zhang, S., Bogy, D.B.: A heat transfer model for thermal fluctuations in a thin slider/disk air bearing. Int. J. Heat Mass Transf. 42, 1791–1800 (1999)

    Article  Google Scholar 

  25. Chen, D., Liu, N., Bogy, D.: A phenomenological heat transfer model for the molecular gas lubrication system in hard disk drives. J. Appl. Phys. 105, 084303 (2009)

    Article  Google Scholar 

  26. Hu, Y.: Head–disk-suspension dynamics. Ph.D. thesis, University of California, Berkeley (1996)

  27. Lu, S.: Numerical simulation of slider air bearings. Ph.D. thesis, University of California, Berkeley (1997)

  28. Cox, B., Bogy, D.B.: The CML air bearing design program (CMLAir), version 7 user manual (2007)

  29. Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. Proc. R Soc. Lond. 295, 300–319 (1966)

    Article  Google Scholar 

  30. Chen, D., Bogy, D.B.: Intermolecular force and surface roughness models for air bearing simulations for sub-5 nm flying height sliders. Microsyst. Technol. 13, 1211–1217 (2007)

    Article  Google Scholar 

  31. Bhargava, P.: Numerical simulations of the head–disk interface in hard disk drives. Ph.D. thesis, University of California, Berkeley (2008)

  32. Wu, L., Bogy, D.B.: Effect of the intermolecular forces on the flying attitude of sub-5 NM flying height air bearing sliders in hard disk drives. J. Tribol. 124, 562–567 (2002)

    Article  Google Scholar 

  33. Gupta, V., Bogy, D.B.: Dynamics of sub-5-nm air-bearing sliders in the presence of electrostatic and intermolecular forces at the head–disk interface. IEEE Trans. Magn. 41, 610–615 (2005)

    Article  Google Scholar 

  34. Zheng, J., Bogy, D.B.: CML TFC code user’s manual (2009)

  35. Kays, W.M., Crawford, M.E.: Convective heat and mass transfer. McGraw-Hill, New York (1993)

    Google Scholar 

  36. Zeng, Q.H., Bogy, D.B.: Stiffness and damping evaluation of air bearing sliders and new designs with high damping. J. Tribol. 121, 341–347 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Disk Drive Equipment and Materials Association (IDEMA) Advanced Storage Technology Consortium (ASTC) and the Computer Mechanics Laboratory in the Department of Mechanical Engineering at University of California, Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Bechtel Dahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, J.B., Bogy, D.B. Static and Dynamic Slider Air-Bearing Behavior in Heat-Assisted Magnetic Recording Under Thermal Flying Height Control and Laser System-Induced Protrusion. Tribol Lett 54, 35–50 (2014). https://doi.org/10.1007/s11249-014-0305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0305-4

Keywords

Navigation