Skip to main content
Log in

Highly efficient and inducible DNA excision in transgenic silkworms using the FLP/FRT site-specific recombination system

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Efficient and inducible recombinase-mediated DNA excision is an optimal technology for automatically deleting unwanted DNA sequences, including selection marker genes. However, this methodology has yet to be established in transgenic silkworms. To achieve efficient and inducible FLP recombinase-mediated DNA excision in transgenic silkworms, one transgenic target strain (TTS) containing an FRT-flanked silkworm cytoplasmic actin 3 gene promoter (A3)-enhanced green fluorescent protein (EGFP) expression cassette, as well as two different types of FLP recombinase expression helper strains were generated. Then, the FLP recombinase was introduced into the TTS silkworms by pre-blastoderm microinjection and sexual hybridization. Successful recombinase-mediated deletion of the A3-EGFP expression cassette was observed in the offspring of the TTS, and the excision efficiencies of the FLP expression vector and FLP mRNA pre-blastoderm microinjection were 2.38 and 13.3 %, respectively. The excision efficiencies resulting from hybridization between the TTS and the helper strain that contained a heat shock protein 70 (Hsp70)-FLP expression cassette ranged from 32.14 to 36.67 % after heat shock treatment, while the excision efficiencies resulting from hybridization between the TTS and the helper strain containing the A3-FLP expression cassette ranged from 97.01 to 100 %. These results demonstrate that the FLP/FRT system can be used to achieve highly efficient and inducible post-integration excision of unwanted DNA sequences in transgenic silkworms in vivo. Our present study will facilitate the development and application of the FLP/FRT system for the functional analysis of unknown genes, and establish the safety of transgenic technologies in the silkworm and other lepidopteran species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 μm circle DNA of yeast: interaction with its target sequences. Cell 40:795–803

    Article  CAS  PubMed  Google Scholar 

  • Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736

    Article  CAS  PubMed  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2μ circle is site-specific. Cell 29:227–234

    Article  CAS  PubMed  Google Scholar 

  • Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daimon T, Kiuchi T, Takasu Y (2014) Recent progress in genome engineering techniques in the silkworm, Bombyx mori. Dev Growth Differ 56:14–25

    Article  CAS  PubMed  Google Scholar 

  • Deng DJ, Xu HF, Wang F, Duan XL, Ma SY, Xiang ZH, Xia QY (2013) The promoter of Bmlp3 gene can direct fat body-specific expression in the transgenic silkworm, Bombyx mori. Transgenic Res 22:1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Xu H, Ma S, Guo H, Wang F, Zhao P, Xia Q (2013) Cre-mediated targeted gene activation in the middle silk glands of transgenic silkworms (Bombyx mori). Transgenic Res 22:607–619

    Article  CAS  PubMed  Google Scholar 

  • Fernandes F, Vidigal J, Dias MM, Prather KL, Coroadinha AS, Teixeira AP, Alves PM (2012) Flipase-mediated cassette exchange in Sf9 insect cells for stable gene expression. Biotechnol Bioeng 109:2836–2844

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100

    Article  CAS  PubMed  Google Scholar 

  • Golic KG, Golic MM (1996) Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144:1693–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haghighat-Khah RE, Scaife S, Martins S, St John O, Matzen KJ, Morrison N, Alphey L (2015) Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth. PLoS One 10:e0121097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn C, Handler AM (2005) Site-specific genomic targeting in Drosophila. Proc Natl Acad Sci USA 102:12483–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  CAS  PubMed  Google Scholar 

  • Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T (2003) Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 165:1329–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinskiene N, Coates CJ, Ashikyan A, James AA (2003) High efficiency, site-specific excision of a marker gene by the phage P1 cre-loxP system in the yellow fever mosquito, Aedes aegypti. Nucleic Acids Res 31:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Cheng T, Dang Y, Peng Z, Zhao P, Liu S, Jin S, Lin P, Sun Q, Xia Q (2013) Identification of a midgut-specific promoter in the silkworm Bombyx mori. Biochem Biophys Res Commun 433:542–546

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi I, Kojima K, Uchino K, Sezutsu H, Iizuka T, Tatematsu KI, Yonemura N, Tanaka H, Yamakawa M, Ogura E, Kamachi Y, Tamura T (2011) An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants. Arch Insect Biochem Physiol 76:195–210

    Article  CAS  PubMed  Google Scholar 

  • Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage phiC31. J Mol Biol 222:897–908

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213

    Article  CAS  PubMed  Google Scholar 

  • Long DP, Zhao AC, Chen XJ, Zhang Y, Lu WJ, Guo Q, Handler AM, Xiang ZH (2012) FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori. PLoS One 7:e40150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long D, Zhao A, Xu L, Lu W, Guo Q, Zhang Y, Xiang Z (2013) In vivo site-specific integration of transgene in silkworm via PhiC31 integrase-mediated cassette exchange. Insect Biochem Mol Biol 43:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Long D, Lu W, Zhang Y, Bi L, Xiang Z, Zhao A (2015a) An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori. Sci Rep 5:8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long D, Lu W, Zhang Y, Guo Q, Xiang Z, Zhao A (2015b) New insight into the mechanism underlying fibroin secretion in silkworm, Bombyx mori. FEBS J 282:89–101

    Article  CAS  PubMed  Google Scholar 

  • Luetke KH, Sadowski PD (1995) The role of DNA bending in Flp-mediated site-specific recombination. J Mol Biol 251:493–506

    Article  CAS  PubMed  Google Scholar 

  • Lyznik LA, Rao KV, Hodges TK (1996) FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 24:3784–3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SY, Zhang SL, Wang F, Liu Y, Liu YY, Xu HF, Liu C, Lin Y, Zhao P, Xia QY (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One 7:e45035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SY, Shi R, Wang XG, Liu YY, Chang JS, Gao J, Lu W, Zhang JD, Zhao P, Xia QY (2014) Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Sci Rep 4:6867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AC, Schaub TL, James AA (1991) FLP-mediated recombination in the vector mosquito, Aedes aegypti. Nucleic Acids Res 19:5895–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, Huppert K, Tan LR, Winter CG, Bogart KP, Deal JE, Deal-Herr ME, Grant D, Marcinko M, Miyazaki WY, Robertson S, Shaw KJ, Tabios M, Vysotskaia V, Zhao L, Andrade RS, Edgar KA, Howie E, Killpack K, Milash B, Norton A, Thao D, Whittaker K, Winner MA, Friedman L, Margolis J, Singer MA, Kopczynski C, Curtis D, Kaufman TC, Plowman GD, Duyk G, Francis-Lang HL (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292

    Article  CAS  PubMed  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    Article  CAS  PubMed  Google Scholar 

  • Senecoff JF, Rossmeissl PJ, Cox MM (1988) DNA recognition by the FLP recombinase of the yeast 2 μm plasmid. A mutational analysis of the FLP binding site. J Mol Biol 201:405–421

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Kim BY, Jeon HY, Lee A, Lee S, Sung SH, Park CS, Lee CK, Kong H, Song Y, Kim K (2014) Expression system for production of bioactive compounds, recombinant human adiponectin, in the silk glands of transgenic silkworms. Arch Pharm Res 37:645–651

    Article  CAS  PubMed  Google Scholar 

  • Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, Sezutsu H, Ichida Takahama M, Mizoguchi A (2015) Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 5:15566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegal ML, Hartl DL (1996) Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144:715–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MG, Funaguma S, Kanda T, Tamura T, Shimada T (2005) Role of the male BmDSX protein in the sexual differentiation of Bombyx mori. Evol Dev 7:58–68

    Article  CAS  PubMed  Google Scholar 

  • Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M (2010) Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol 40:759–765

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Kanda T, Takiya S, Okano K, Maekawa H (1990) Transient expression of chimeric Cat genes injected into early embryos of the domesticated silkworm Bombyx-mori. Jpn J Genet 65:401–410

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:559

    Article  Google Scholar 

  • Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19:473–487

    Article  CAS  PubMed  Google Scholar 

  • Tateno M, Toyooka M, Shikano Y, Takeda S, Kuwabara N, Sezutsu H, Tamura T (2009) Production and characterization of the recombinant human mu-opioid receptor from transgenic silkworms. J Biochem 145:37–42

    Article  CAS  PubMed  Google Scholar 

  • Theodosiou NA, Xu T (1998) Use of FLP/FRT system to study Drosophila development. Methods Companion Methods Enzymol 14:355–365

    Article  CAS  Google Scholar 

  • Tomita S, Kanda T, Imanishi S, Tamura T (1999) Yeast FLP recombinase-mediated excision in cultured cells and embryos of the sikworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 34:371–377

    Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16:449–465

    Article  CAS  PubMed  Google Scholar 

  • Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genom 277:213–220

    Article  CAS  Google Scholar 

  • Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Mita K, Tamura T (2008) Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 38:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Uhlirova M, Asahina M, Riddiford LM, Jindra M (2002) Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev Genes Evol 212:145–151

    Article  CAS  PubMed  Google Scholar 

  • Venken KJ, Bellen HJ (2012) Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase. Methods Mol Biol 859:203–228

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Li ZQ, Xu J, Zeng BS, Ling L, You L, Chen YZ, Huang YP, Tan AJ (2013) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23:1414–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tan A, Xu J, Li Z, Zeng B, Ling L, You L, Chen Y, James AA, Huang Y (2014) Site-specific, TALENs-mediated transformation of Bombyx mori. Insect Biochem Mol Biol 55:26–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Xin H, Roy B, Dai J, Miao Y, Gao G (2014) Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori. PLoS One 9:e101210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin HH, Zhang DP, Chen RT, Cai ZZ, Lu Y, Liang S, Miao YG (2015) Transcription factor Bmsage plays a crucial role in silk gland generation in silkworm, Bombyx mori. Arch Insect Biochem Physiol 90:59–69

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Bi H, Chen R, Aslam AF, Li Z, Ling L, Zeng B, Huang Y, Tan A (2015) Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori. Insect Mol Biol 24:183–190

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Cao G, Xue R, Gong C (2014) Construction of transformed, cultured silkworm cells and transgenic silkworm using the site-specific integrase system from phage φC31. Mol Biol Rep 41:6449–6456

    Article  CAS  PubMed  Google Scholar 

  • Yonemura N, Tamura T, Uchino K, Kobayashi I, Tatematsu K, Iizuka T, Tsubota T, Sezutsu H, Muthulakshmi M, Nagaraju J, Kusakabe T (2013) phiC31-integrase-mediated, site-specific integration of transgenes in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 48:265–273

    Article  CAS  Google Scholar 

  • Zeng B, Zhan S, Wang Y, Huang Y, Xu J, Liu Q, Li Z, Huang Y, Tan A (2016) Expansion of CRISPR targeting sites in Bombyx mori. Insect Biochem Mol Biol 72:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang J, Lu Y, Hu Y, Xue R, Cao G, Gong C (2014) Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther 21:81–88

    Article  CAS  PubMed  Google Scholar 

  • Zhao AC, Lu C, Li B, Pu XY, Zhou ZY, Xiang ZH (2004) Construction of AFLP molecular markers linkage map and localization of green cocoon gene in silkworm (Bombyx mori). Acta Genetica Sinica 31:787–794

    CAS  PubMed  Google Scholar 

  • Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2010) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19:29–44

    Article  CAS  PubMed  Google Scholar 

  • Zhao AC, Long DP, Ma SY, Xu LX, Zhang MR, Dai FY, Xia QY, Lu C, Xiang ZH (2012) Efficient strategies for changing the diapause character of silkworm eggs and for the germline transformation of diapause silkworm strains. Insect Sci 19:172–182

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alfred M. Handler (USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, Florida, USA) for kindly providing the pKhsp82-FLP Plasmid and Dr. Mark L. Siegald (Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA) for kindly providing the pMLS104 Plasmid. This work was supported by the Fundamental Research Funds for the Central Universities (XDJK2016C089), Project funded by China Post-doctoral Science Foundation (2015M580768), the China Agriculture Research System (CARS-22-ZJ0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aichun Zhao.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Structures of piggyBac-derived vectors and FLP recombinase or mRNA transient expression helper vectors (PDF 945 kb)

Fig. S2

Procedure for producing SSRS silkworms via sexual hybridization. (A) Strategy for producing SSRS silkworms via crossing heterozygous G1 TTS females with H-A males. One G1 heterozygous H-A male (♂) was backcrossed with three different G1 TTS females (♀) to produce three G2 broods (a, b, and c). The G2 eggs from each brood were treated with HCl solution to break the diapause. The hybrid TTS&H-A double-transgenic individuals were screened from each G2 brood and backcrossed with wild-type Dazao adults to produce G3 broods. These G3 broods were treated with HCl solution to break the diapause, and the fluorescence phenotypes of the larvae from these G3 broods were analyzed. (B) Strategy for production of SSRS silkworms by crossing heterozygous G1 TTS females with H–H males. One heterozygous G1 H–H male (♂) was backcrossed with three G1 TTS females (♀) to produce three G2 broods (d, e, and f). The G2 eggs from each brood were divided into two groups (numbered 1 and 2) and treated with HCl solution to break the diapause. Then, the three-day-old G2 eggs from group 2 of each brood were subjected to the HST three times per day at 6-h intervals for 5 days. After heat shock, the G2 eggs were maintained and reared at 25 °C. The eggs from group 1 of each G2 brood that were not subjected to the HST (no HST) were used as controls. The hybrid TTS&H–H double-transgenic individuals were screened from the d, e, and f broods of each group, and these G2 fertile adults were backcrossed with wild-type Dazao adults to produce G3 broods. These G3 broods were treated with HCl solution to break the diapause, and the fluorescence phenotypes of the larvae from these G3 broods of each group (G3 d, e, and f broods) were analyzed (PDF 1255 kb)

Fig. S3

Molecular confirmation of transgene constructs in the genomes of FLP recombinase expression helper strains. (A) Schematic maps of the transgene constructs in the genomes of H-A (top) and H–H individuals (bottom). The A3-MF/FLP-MR and Hsp-MF/FLP-MR primer pairs were used for PCR analysis of genomic DNAs from H-A and H–H individuals, respectively. (B) PCR analysis of genomic DNA using primer pairs specific for the H-A and H–H genomes. The expected 652-bp PCR products were observed for H-A-1–H-A-3 individuals using the A3-MF/FLP-MR primer pair. The expected 203-bp PCR products were observed for H–H-1 and H–H-2 individuals using the Hsp-MF/FLP-MR primer pair. Lane WT, the wild-type Dazao strain used as a control; lane M, Trans2 K Plus DNA Marker (PDF 579 kb)

Fig. S4

Expression of EGFP and DsRed genes in the larvae of the TTS and H-A-1 (or H–H-1) silkworms. Two-day-old first instar larvae of TTS (A, B) and H-A-1 (or H–H-1) silkworms (C, D) showing white light (A, C), GFP fluorescence (B), and RFP fluorescence (D) in the developing larval ocelli or epidermis. Arrowheads denote the positions of the GFP and RFP fluorescence in the larval ocelli; triangles denote GFP fluorescence in the larval epidermis. The different scale bars are located at the bottom left of the images (PDF 1933 kb)

Fig. S5

Strategy for FLP recombinase-mediated, site-specific excision of a target gene by sexual hybridization. (A) The mechanism of site-specific gene excision in the offspring of TTS&H-A-1 double-transgenic silkworms. A TTS adult was crossed with the recombinase-expressing helper strain H-A-1 adult to produce hybrid TTS&H-A-1 double-transgenic offspring. Recombination between two FRT sites of the TTS&H-A-1 germ cell genome, which was mediated by the A3 promoter driving FLP recombinase expression, resulted in deletion of the A3-EGFP expression cassette in the genome of SSRS individuals. (B) The mechanism of site-specific gene excision in the offspring of TTS&H–H-1 double-transgenic silkworms. A TTS adult was crossed with a recombinase-expressing helper strain H–H-1 adult to produce hybrid TTS&H–H-1 double-transgenic offspring. Recombination between two FRT sites of the TTS&H–H-1 germ cell genome, which was mediated by the hsp70 promoter driving FLP recombinase expression (HST), also resulted in the deletion of the A3-EGFP expression cassette in the genome of SSRS individuals (PDF 687 kb)

Fig. S6

Expression of EGFP gene in adult TTS and SSRS individuals. (A–D) show white light (A, C) and GFP fluorescent (B, D) images of the TTS adults. (E–H) show white light (E, G) and GFP fluorescent (F, H) images of the SSRS adults. Arrowheads denote the position of GFP fluorescence in the compound eye; triangles denote the position of GFP fluorescence in the wing epidermis. The white scale bar represents 1 mm (PDF 1410 kb)

Fig. S7

Sequencing of the FRT sites from TTS individuals and all of the SSRS individuals. Sequencing of the PCR products indicated that the structures of the two 48-bp FRT sites and restriction enzyme sites in the TTS genome (top), one 48-bp FRT site, and restriction enzyme sites in the SSRS genome (bottom) were as expected for a FLP recombinase-mediated, site-specific DNA excision event (PDF 795 kb)

Supplementary material 8 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, D., Lu, W., Hao, Z. et al. Highly efficient and inducible DNA excision in transgenic silkworms using the FLP/FRT site-specific recombination system. Transgenic Res 25, 795–811 (2016). https://doi.org/10.1007/s11248-016-9970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9970-4

Keywords

Navigation