Skip to main content

Advertisement

Log in

Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Tospoviruses cause severe damages to important crops worldwide. In this study, Nicotiana benthamiana transgenic lines carrying individual untranslatable constructs comprised of the conserved region of the L gene (denoted as L), the 5′ half of NSs coding sequence (NSs) or the antisense fragment of whole N coding sequence (N) of Watermelon silver mottle virus (WSMoV), individually or in combination, were generated. A total of 15–17 transgenic N. benthamiana lines carrying individual transgenes were evaluated against WSMoV and the serologically unrelated Tomato spotted wilt virus (TSWV). Among lines carrying single or chimeric transgenes, the level of resistance ranged from susceptible to completely resistant against WSMoV. From the lines carrying individual transgenes and highly resistant to WSMoV (56–63 % of lines assayed), 30 % of the L lines (3/10 lines assayed) and 11 % of NSs lines (1/9 lines assayed) were highly resistant against TSWV. The chimeric transgenes provided higher degrees of resistance against WSMoV (80–88 %), and the NSs fragment showed an additive effect to enhance the resistance to TSWV. Particularly, the chimeric transgenes with the triple combination of fragments, namely L/NSs/N or HpL/NSs/N (a hairpin construct), provided a higher degree of resistance (both 50 %, with 7/14 lines assayed) against TSWV. Our results indicate that the untranslatable NSs fragment is able to enhance the transgenic resistance conferred by the L conserved region. The better performance of L/NSs/N and HpL/NSs/N in transgenic N. benthamiana lines suggests their potential usefulness in generating high levels of enhanced transgenic resistance against serologically unrelated tospoviruses in agronomic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-K, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226

    Article  Google Scholar 

  • Chen CC, Chen TC, Lin YH, Yeh SD, Hsu HT (2005) A chlorotic spot disease on Calla lilies (Zantedeschia spp.) Is caused by a tospovirus serologically but distantly related to watermelon silver mottle virus. Plant Dis 89:440–445

    Article  CAS  Google Scholar 

  • Chen TC, Huang CW, Kuo YW, Liu FL, Yuan CH, Hsu HT, Yeh SD (2006) Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of watermelon silver mottle virus serogroup. Phytopathology 96:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Chu FH, Yeh SD (1998) Comparison of replication forms and ambisense M RNA of watermelon silver mottle virus with other tospoviruses. Phytopathology 88:351–358

    Article  CAS  PubMed  Google Scholar 

  • Chu FH, Chao CH, Peng YC, Lin SS, Chen CC et al (2001) Serological and molecular characterization of peanut chlorotic fanspot virus, a new species of the genus Tospovirus. Phytopathology 91:856–863

    Article  CAS  PubMed  Google Scholar 

  • de Haan P, Wagemakers L, Peters D, Goldbach R (1990) The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001–1007

    Article  PubMed  Google Scholar 

  • de Haan P, Kormelink R, de Oliveira Resende R, van Poelwijk F, Peters D, Goldbach R (1991) Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72:2207–2216

    Article  PubMed  Google Scholar 

  • Fuchs M, Tricoli DM, Carney KJ, Schesser M, McFerson JR, Gonsalves D (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis 82:1350–1356

    Article  Google Scholar 

  • Gielen JJL, de Haan P, Kool AJ, Peters D, van Grinsven MQJM, Goldbach RW (1991) Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Nat Biotechnol 9:1363–1367

    Article  CAS  Google Scholar 

  • Hassani-Mehraban A, Brenkman AB, van den Broek NJ, Goldbach R, Kormelink R (2009) RNAi-mediated transgenic tospovirus resistance broken by intraspecies silencing suppressor protein complementation. Mol Plant-Microbes Interact 22:1250–1257

    Article  CAS  Google Scholar 

  • Hoang NH, Yang HB, Kang BC (2013) Identification and inheritance of a new source of resistance against tomato spotted wilt virus (TSWV) in Capsicum. Sci Hortic 161:8–14

    Article  CAS  Google Scholar 

  • Horsch R, Fry J, Hoffmann N, Eichholtz D, Rogers S, Fraley R (1985) A Simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jahn M et al (2000) Genetic mapping of the Tsw locus for resistance to the tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant-Microbes Interact 13:673–682

    Article  CAS  Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J Gen Virol 81:235–242

    CAS  PubMed  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant-Microbes Interact 15:826–833

    Article  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    Article  CAS  PubMed  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2011) Virus taxonomy: ninth report of the ICTV. Elsevier Academic Press, Amsterdam, pp 725–741

    Google Scholar 

  • Kormelink R, de Haan P, Meurs C, Peters D, Goldbach R (1992) The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 73:2795–2804

    Article  CAS  PubMed  Google Scholar 

  • Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13:303–317

    Article  CAS  PubMed  Google Scholar 

  • Lebas BSM, Ochoa-Corona FM (2007) Impatiens necrotic spot virus. In: Rao GP, Bragard C, Lebas BSM (eds) Characterization, diagnosis and management of plant viruses. Vol. 4: Grain crops and ornamentals. Studium Press LLC, Houston, USA, pp 221–243

  • Lopez C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L (2011) Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of tomato spotted wilt virus. J Gen Virol 92:210–215

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie DJ, Ellis PJ (1992) Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol Plant Microbes Interact 5:34–40

    Article  CAS  Google Scholar 

  • Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that the nonstructural protein of tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. Mol Plant-Microbes Interact 20:547–558

    Article  CAS  Google Scholar 

  • Pang SZ, Slightom JL, Gonsalves D (1993) Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot Tospoviruses. Biotechnology 11:819–824

    Article  CAS  PubMed  Google Scholar 

  • Pang SZ, Bock JH, Gonsalves C, Slightom JL, Gonsalves D (1994) Resistance of transgenic Nicotiana benthamiana plants to tomato spotted wilt and impatiens necrotic spot tospoviruses: evidence of involvement of the N protein and N gene RNA in resistance. Phytopathology 84:243–249

  • Pang SZ, Ja FJ, Carney K, Stout J, Tricoli DM, Quemada HD, Gonsalves D (1996) Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant J 9:899–909

    Article  CAS  Google Scholar 

  • Pappu HR, Jones RA, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236

    Article  CAS  PubMed  Google Scholar 

  • Peng JC, Chen TC, Raja JAJ, Yang CF, Chien WC, Lin CH, Liu FL, Wu HW, Yeh SD (2014) Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLoS ONE 9:e96073

    Article  PubMed Central  PubMed  Google Scholar 

  • Prins M, Goldbach R (1996) RNA-mediated virus resistance in transgenic plants. Arch Virol 141:2259–2276

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Goldbach R (1998) The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35

    Article  CAS  PubMed  Google Scholar 

  • Prins M, de Haan P, Luyten R, van Veller M, van Grinsven MQ, Goldbach R (1995) Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Mol Plant-Microbes Interact 8:85–91

    Article  CAS  Google Scholar 

  • Prins M, Kikkert M, Ismayadi C, Graauw W, Haan P, Goldbach R (1997) Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSM gene sequences. Plant Mol Biol 33:235–243

    Article  CAS  PubMed  Google Scholar 

  • Rao X, Wu Z, Li Y (2013) Complete genome sequence of a watermelon silver mottle virus isolate from China. Virus Genes 46:576–580

    Article  CAS  PubMed  Google Scholar 

  • Roselló S, Díez M, Nuez F (1998) Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 104:499–509

    Article  Google Scholar 

  • Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100:4429–4434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual book, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Sonoda S, Tsumuki H (2004) Analysis of RNA-mediated virus resistance by NSs and NSm gene sequences from tomato spotted wilt virus. Plant Sci 166:771–778

    Article  CAS  Google Scholar 

  • Sonoda S, Nishiguchi M, Tsumuki H (2005) Evaluation of virus resistance conferred by the NSs gene sequences from tomato spotted wilt virus in transgenic plants. Breed Sci 55:27–33

    Article  CAS  Google Scholar 

  • Stevens MR, Scott SJ, Gergerich RC (1991) Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59:9–17

    Google Scholar 

  • Storms MMH et al (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    Article  CAS  Google Scholar 

  • Takeda A et al (2002) Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Lett 532:75–79

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Bau H, Chen L, Yeh SD (2004) The ability of Papaya ringspot virus strains overcoming the transgenic resistance of papaya conferred by the coat protein gene is not correlated with higher degrees of sequence divergence from the transgene. EMBO 110:871–882

    CAS  Google Scholar 

  • Yang CF, Chen KC, Cheng YH, Raja JAJ, Huang YL, Chien WC, Yeh SD (2014) Generation of marker-free transgenic plants concurrently resistant to a DNA geminivirus and a RNA tospovirus. Sci Rep 4:5717

    PubMed Central  PubMed  Google Scholar 

  • Yeh SD, Chang TF (1995) Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85:58–64

    Article  CAS  Google Scholar 

  • Yeh SD, Gonsalves D (1984) Purification and immunological analysis of cylindrical-inclusion protein induced by papaya ringspot virus and watermelon mosaic virus I. Phytopathology 74:1273–1278

    Article  CAS  Google Scholar 

  • Yeh SD, Lin YC, Cheng YH, Jih CL, Chen MJ (1992) Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis 76:835–840

    Article  Google Scholar 

  • Zhou HY, Chen SB, Li XG, Xiao GF, Wei XL, Zhu Z (2003) Generating marker-free transgenic tobacco plants by Agrobacterium mediated transformation with double T-DNA binary vector. Acta Bot Sin 45:1103–1108

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the funding supports of the Ministry of Science and Technology (NSC92-2317-B-005-024, NSC-101-2911-I-005-301 and NSC-102-2911-I-005-301), and the Ministry of Education, Taiwan, ROC under the ATU plan for this study.

Conflict of interest

No potential conflicts of interest are disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Dong Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazhisai, U., Rajagopalan, P.A., Raja, J.A.J. et al. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Res 24, 635–649 (2015). https://doi.org/10.1007/s11248-015-9865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-015-9865-9

Keywords

Navigation