Skip to main content
Log in

Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tomato yellow leaf curl disease caused by different begomovirus species leads to substantial tomato production losses worldwide. In Taiwan, the monopartite tomato leaf curl Taiwan virus (ToLCTWV) and bi-partite tomato yellow leaf curl Thailand virus (TYLCTHV) are the predominant begomovirus species causing this disease. Resistance genes are available in wild tomato species and a continuous search for new resistance genes and alternative control methods is required to respond to the rapid evolution of virus strains. RNA interference is an efficient technology to induce resistance against viral pathogens. Six different sections of the ToLCTWV genome were tested in transformed tomato for their capacity to reduce symptoms and inhibit viral DNA accumulation. The two most effective constructs for ToLCTWV infection carried regions of the C1 and C2 genes, and portions of either the C3 or C4 gene of ToLCTWV. A RNAi construct containing fusions of C1, C2 and C3 sections of ToLCTWV and the corresponding sections of the TYLCTHV DNA-A genome were introgressed into tomato line CLN1621L. R1 and R2 families were challenged using viruliferous whiteflies in separate screen houses for ToLCTWV and TYLCTHV. Sixteen and 12 R2 plants derived from one primary transformant remained symptomless until at least 3 weeks after exposure to ToLCTWV and TYLCTHV, respectively, and accumulated only very low titres of viral DNA, as shown by real-time polymerase chain reaction analysis. Our results suggest that expression of bi-viral RNAi constructs in tomato can lead to resistance against two different tomato infecting begomovirus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RNAi:

RNA interference

siRNAs:

short interfering RNAs

ToLCTWV:

Tomato leaf curl Taiwan virus

TYLCTHV:

Tomato yellow leaf curl Thailand virus

WAE:

weeks after exposure

References

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levinet I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • Arif M, Azhar U, Arshad M, Zafar Y, Mansoor S, Asad S (2012) Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res 21:303–311

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes EA, Aragão FJ (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe In 20:717–726

    Article  CAS  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  CAS  PubMed  Google Scholar 

  • Chung BN, Yoon JY, Palukaitis P (2013) Engineered resistance in potato against potato leafroll virus, potato virus a and potato virus Y. Virus Genes 47:86–92

    Article  CAS  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13:207–209

    Article  CAS  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organizational structure condueive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Gronenborn B (2007) The tomato yellow leaf curl virus genome and function of its proteins, In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 67–84

  • Hanson P, Green S, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetics Cooperative 56:17–18

    Google Scholar 

  • Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296

    Article  CAS  PubMed  Google Scholar 

  • Horowitz R, Denholm I, Morin S (2007) Resistance to insecticides in the TYLCV vector Bemisia tabaci, In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 305–325

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutton SF, Scott JW, Schuster DJ (2012) Recessive resistance 1 to tomato yellow leaf curl virus from the tomato cultivar tyking is located in the same region as Ty-5 on chromosome 4. Hort Sci 47:324–327

    Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breeding 20:271–284

    Article  CAS  Google Scholar 

  • Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009) Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hortic Sci 134:281–288

    Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kenyon L, Tsai WS, Shih SL, Lee LM (2014) Emergence and diversity of begomovirus infecting solanaceous crops in East and Southeast Asia. Virus Res 186:104–130

    Article  CAS  PubMed  Google Scholar 

  • Lafforgue G, Martínez F, Niu QW, Chua NH, Daròs JA, Elena SF (2013) Improving the effectiveness of artificial MicroRNA (amiR)-mediated resistance against turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J Virol 87:8254–8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY, Ku HM, Tsai WS, Green SK, Jan FJ (2011) Resistance to a DNA and a RNA virus in transgenic plants by using a single chimeric transgene construct. Transgenic Res 20:261–270

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Tsai WS, Ku HM, Jan FJ (2012) Evaluation of DNA fragments covering the entire genome of a monopartite begomovirus for induction of viral resistance in transgenic plants via gene silencing. Transgenic Res 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maruthi MN, Rekha AR, Cork A, Colvin J, Alam SN, Kader KA (2005) First report of Tomato leaf curl New Delhi virus infecting tomato in Bangladesh. Plant Dis 89:1011–1013

    Article  Google Scholar 

  • Medina-Hernández D, Rivera-Bustamante RF, Tenllado F, Holguín-Peña RJ (2013) Effects and effectiveness of two RNAi constructs for resistance to Pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses 5:2931–2945

    Article  PubMed  PubMed Central  Google Scholar 

  • Mubin M, Hussain M, Briddon BW, Mansoor S (2011) Selection of target sequences as well as sequence identity determine the outcome of RNAi approach for resistance against cotton leaf curl geminivirus complex. Virol J 8: 1–8

  • Nawaz-Ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–1832

    Article  CAS  PubMed  Google Scholar 

  • Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M 1 (2004) Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J GenVirol 85: 1745–1749

  • Patil BL, Ogwok E, Wagaba H, Mohammed IU, Yadav JS, Bagewadi B, Taylor NJ, Kreuze JF, Maruthi MN, Alicai T, Fauquet CM (2011) RNAi-mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease. Mol Plant Pathol 12:31–41

    Article  CAS  PubMed  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    Article  CAS  PubMed  Google Scholar 

  • Praveen S, Mishra AK, Antony G (2006) Viral suppression in transgenic plants expressing chimeric transgene from tomato leaf curl virus and cucumber mosaic virus. Plant Cell Tiss Org 84:47–53

    Article  CAS  Google Scholar 

  • Prins M, Resende RO, Anker C, van Schepen A, de Haan P, Goldbach R (1996) Engineered RNA-mediated resistance to Tomato spotted wilt virus is sequence specific. Mol Plant Microbe In 9:416–418

    Article  CAS  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  • Ramesh S, Mishra A, Praveen S (2007) Hairpin RNA-mediated strategies for silencing of Tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257

    Article  CAS  PubMed  Google Scholar 

  • Schuck J, Gursinsky T, Pantaleo V, Burgyán J, Behrens SE (2013) AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Res 41:5090–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengoda VG, Tsai WS, De La Peña RC, Green SK, Kenyon L, Hughes J (2012) Expression of the full-length coat protein gene of Tomato leaf curl Taiwan virus is not necessary for recovery phenotype in transgenic tomato. J Phytopathol 160:213–219

    Article  CAS  Google Scholar 

  • Shepherd D, Martin D, Thomson J (2009) Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176:1–11

    Article  CAS  Google Scholar 

  • Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego, pp 301–326

  • Sun S, Kang XP, Xing XJ, Chen ZF, Zheng SW, Xing GM (2014) Transient expression of siRNA targeted against the TYLCV AV1, AC1 and AC3 genes for high resistance in tomato. Sci Hort 179:321–327

    Article  CAS  Google Scholar 

  • Tsai WS, Shih SL, Kenyon L, Green SK, Jan FJ (2011) Temporal distribution and pathogenicity of the predominate tomato-infecting begomoviruses in Taiwan. Plant Pathol 60:787–799

    Article  CAS  Google Scholar 

  • Vanderschuren H, Stupak M, Fütterer J, Gruissem W, Zhang P (2007) Engineering resistance to geminiviruses: review and perspectives. Plant Biotechnol J 5:207–220

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus 1 problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Wani SH, Sanghera GS, Singh NB (2010) Biotechnology and plant disease control-role of RNA interference. AJPS 1:55–68

    Article  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb Protoc. doi:10.1101/pdb.prot4666

    Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Zamir D, Ekstein Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty- 1. Theor Appl Genet 88:141–146

  • Zhang X, Sato S, Ye X, Dorrance AE, Morris TJ, Clemente TE, Qu F (2011) Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene. Phytopathol 101:1264–1269

    Article  CAS  Google Scholar 

  • Zhu CX, Song YZ, Yin GH, Wen FJ (2009) Induction of RNA-mediated multiple virus resistance to Potato virus Y, Tobacco mosaic virus and Cucumber mosaic virus. J Phytopathol 157:101–107

    Article  CAS  Google Scholar 

  • Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y (2007) Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Man-mei Liu for her technical support on transformation. This study was financed by the Council of Agriculture, Taiwan (Proj no. 99AS-1.1.1-FD-Z1(4), 100AS-1.1.1-FD-Z1 and 101AS-9.1.1-FD-Z1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schafleitner.

Electronic supplementary material

Supplemental Fig. 1

(DOCX 134 kb)

Supplemental Table 1

(DOCX 17 kb)

Supplemental Table 2

(DOCX 15.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Hm., Lin, Cy., Tsai, Ws. et al. Resistance to viral yellow leaf curl in tomato through RNAi targeting two Begomovirus species strains. J. Plant Biochem. Biotechnol. 25, 199–207 (2016). https://doi.org/10.1007/s13562-015-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0325-7

Keywords

Navigation