Skip to main content
Log in

A retrospective analysis of germline competence in rat embryonic stem cell lines

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The factors responsible for conferring germline competence in embryonic stem (ES) cell lines remain unidentified. In the present study, rat ES cell lines (n = 17) were established with 3i medium (SU5402, PD0325901, CHIR99021), 2i medium (PD0325901, CHIR99021) or 2iF medium (PD0325901, CHIR99021, forskolin), and their potential for germline transmission to the G1 generation was examined. Rat strains were divided into an albino group (F344, Wistar or CAG/Venus transgenic rats with the Wistar background) or a colored coat group (Brown-Norway, Dark-Agouti, or BLK rats selected from >F3 generations of Wistar × Dark-Agouti rats based on their black coat color). Successful germline transmission was observed in 57 % (4/7), 40 % (2/5) and 100 % (5/5) of the ES cells established with 3i, 2i and 2iF media, respectively. ES cell lines from the homozygous CAG/Venus transgenic rats were established in all three media, but only the lines established with the 2iF medium were germline-competent. Neither coat-color (albino: 64 %, 7/11; colored: 67 %, 4/6) nor gender of the ES cell lines (XX: 67 %, 2/3; XY: 64 %, 9/14) were likely to affect germline transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Blair K, Leitch HG, Mansfield W, Dumeau CÉ, Humphreys P, Smith AG (2012) Culture parameters for stable expansion, genetic modification and germline transmission of rat pluripotent stem cells. Biol Open 1:58–65

    Article  PubMed  CAS  Google Scholar 

  • Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79–84

    Article  PubMed  CAS  Google Scholar 

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J et al (2008) Capture of anthentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Faherty S, Fitzgerald A, Keohan M, Quinlan LR (2007) Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell Dev Biol 43:37–47

    Article  CAS  Google Scholar 

  • Fedorov LM, Haegel-Kronenberger H, Hirchenhain J (1997) A comparison of the germline potential of differently aged ES cell lines and their transfected descendants. Transgenic Res 6:223–231

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F et al (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci USA 107:9222–9227

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Hochi S (2005) Cloning in rats. In: Inui A (ed) Epigenetic risks of cloning. CRC Press, Boca Raton, pp 165–175

    Google Scholar 

  • Hirabayashi M, Kato M, Kobayashi T, Sanbo M, Yagi T, Hochi S et al (2010a) Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency. Mol Reprod Dev 77:94

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Kato M, Sanbo M, Kobayashi T, Hochi S, Nakauchi H (2010b) Rat transgenesis via embryonic stem cells electroporated with the Kusabira-Orange gene. Mol Reprod Dev 77:474

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Tamura C, Sanbo M, Goto T, Kato M, Kobayashi T et al (2012) Ability of tetraploid rat blastocysts to support fetal development after complementation with embryonic stem cells. Mol Reprod Dev 79:402–412

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Isolation, culture, and manipulation of embryonic stem cells. In: Hogan B et al (eds) Manipulating the mouse embryo: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 253–290

    Google Scholar 

  • Kanda A, Sotomaru Y, Shiozawa S, Hiyama E (2012) Establishment of ES cells from inbred strain mice by dual inhibition (2i). J Reprod Dev 58:77–83

    Article  PubMed  CAS  Google Scholar 

  • Kawamata M, Ochiya T (2010) Generation of genetically modified rats from embryonic stem cells. Proc Natl Acad Sci USA 107:14223–14228

    Article  PubMed  CAS  Google Scholar 

  • Kiyonari H, Kaneko M, Abe S, Aizawa S (2010) Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability. Genesis 48:317–327

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M et al (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799

    Article  PubMed  CAS  Google Scholar 

  • Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed  CAS  Google Scholar 

  • Robertson EJ, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448

    Article  PubMed  CAS  Google Scholar 

  • Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467:211–213

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakata M, Sasada R, Ooshima Y, Yano T, Shinozawa T et al (2011) Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats. Transgenic Res 21:743–755

    Article  PubMed  Google Scholar 

  • Yamamura K, Markert CL (1981) The production of chimeric rats and their use in the analysis of the hooded pigmentation pattern. Dev Genet 2:131–146

    Article  Google Scholar 

  • Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Meth Enzymol 365:327–341

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 22300147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Hirabayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1646 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirabayashi, M., Tamura, C., Sanbo, M. et al. A retrospective analysis of germline competence in rat embryonic stem cell lines. Transgenic Res 22, 411–416 (2013). https://doi.org/10.1007/s11248-012-9638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9638-7

Keywords

Navigation