Skip to main content

Advertisement

Log in

Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

One of the remarkable achievements in knockout (KO) rat production reported during the period 2008–2010 is the derivation of authentic embryonic stem (ES) cells from rat blastocysts using a novel culture medium containing glycogen synthase kinase 3 and mitogen-activated protein kinase kinase inhibitors (2i medium). Here, we report gene-targeting technology via homologous recombination in rat ES cells, demonstrating its use through production of a protease-activated receptor-2 gene (Par-2) KO rat. We began by generating germline-competent ES cells from Dark Agouti rats using 2i medium. These ES cells, which differentiate into cardiomyocytes in vitro, can produce chimeras with high ES cell contribution when injected into blastocysts. We then introduced a targeting vector with a neomycin-resistant gene driven by the CAG promoter to disrupt Par-2. After a 7-day drug selection, 489 neomycin-resistant colonies were obtained. Following screening by polymerase chain reaction (PCR) genotyping and quantitative PCR analysis, we confirmed three homologous recombinant clones, resulting in chimeras that transmitted the Par-2 targeted allele to offspring. Par-2 KO rats showed a loss of Par-2 messenger RNA expression in their stomach cells and a lack of PAR-2 mediated smooth muscle relaxation in the aorta as indicated by pharmacological testing. Compared with mice, rats offer many advantages in biomedical research, including a larger body size; consequently, they are widely used in scientific investigation. Thus, the establishment of a gene-targeting technology using rat ES cells will be a valuable tool in human disease model production and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  PubMed  CAS  Google Scholar 

  • Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Henry PJ, Carr MJ, Hamilton JR, Moffatt JD (1999) A protective role for protease-activated receptors in the airways. Nature 398:156–160

    Article  PubMed  CAS  Google Scholar 

  • Consortium International Mouse Knockout, Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13

    Article  Google Scholar 

  • Consortium STAR, Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, Chen Y, Cuppen E, Demonchy S, Dopazo J, Flicek P, Foglio M, Fujiyama A, Gut IG, Gauguier D, Guigo R, Guryev V, Heinig M, Hummel O, Jahn N, Klages S, Kren V, Kube M, Kuhl H, Kuramoto T, Kuroki Y, Lechner D, Lee YA, Lopez-Bigas N, Lathrop GM, Mashimo T, Medina I, Mott R, Patone G, Perrier-Cornet JA, Platzer M, Pravenec M, Reinhardt R, Sakaki Y, Schilhabel M, Schulz H, Serikawa T, Shikhagaie M, Tatsumoto S, Taudien S, Toyoda A, Voigt B, Zelenika D, Zimdahl H, Hubner N (2008) SNP and haplotype mapping for genetic analysis in the rat. Nat Genet 40:560–566

    Article  Google Scholar 

  • Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  PubMed  CAS  Google Scholar 

  • Damiano BP, Cheung WM, Santulli RJ, Fung-Leung WP, Ngo K, Ye RD, Darrow AL, Derian CK, de Garavilla L, Andrade-Gordon P (1999) Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J Pharmacol Exp Ther 288:671–678

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Feero WG, Guttmacher AE, Collins FS (2010) Genomic medicine—an updated primer. N Engl J Med 362:2001–2011

    Article  PubMed  CAS  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi M, Kato M, Kobayashi T, Sanbo M, Yagi T, Hochi S, Nakauchi H (2010) Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency. Mol Reprod Dev 77:94

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  PubMed  CAS  Google Scholar 

  • Izsvák Z, Fröhlich J, Grabundzija I, Shirley JR, Powell HM, Chapman KM, Ivics Z, Hamra FK (2010) Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods 7:443–445

    Article  PubMed  Google Scholar 

  • Jacob HJ, Lazar J, Dwinell MR, Moreno C, Geurts AM (2010) Gene targeting in the rat: advances and opportunities. Trends Genet 26:510–518

    Article  PubMed  CAS  Google Scholar 

  • Katada H, Chen HJ, Shigi N, Komiyama M (2009) Homologous recombination in human cells using artificial restriction DNA cutter. Chem Commun (Camb) (43):6545–6547

  • Kawabata A (2003) Gastrointestinal functions of proteinase-activated receptors. Life Sci 74:247–254

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Kubo S, Nakaya Y, Ishiki T, Kuroda R, Sekiguchi F, Kawao N, Nishikawa H (2004) Distinct roles for protease-activated receptors 1 and 2 in vasomotor modulation in rat superior mesenteric artery. Cardiovasc Res 61:683–692

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe J, Takizawa T, Matsumoto J, Tamiya M, Meek SE, Smith AJ, Hunter GD, Plevin R, Saito N, Kanke T, Fujii M, Wada Y (2002) Effect of protease-activated receptor-2 deficiency on allergic dermatitis in the mouse ear. Jpn J Pharmacol 88:77–84

    Article  PubMed  CAS  Google Scholar 

  • Kawamata M, Ochiya T (2010) Generation of genetically modified rats from embryonic stem cells. Proc Natl Acad Sci USA 107:14223–14228

    Article  PubMed  CAS  Google Scholar 

  • Kitada K, Ishishita S, Tosaka K, Takahashi R, Ueda M, Keng VW, Horie K, Takeda J (2007) Transposon-tagged mutagenesis in the rat. Nat Methods 4:131–133

    Article  PubMed  CAS  Google Scholar 

  • Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D, Foy D, Hafezi-Moghadam A, Ley K (2000) Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol 165:6504–6510

    PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • McNeish J (2004) Embryonic stem cells in drug discovery. Nat Rev Drug Discov 3:70–80

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Gócza E, Diaz EM, Prideaux VR, Iványi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development. 110:815–821

    PubMed  CAS  Google Scholar 

  • Nichols J, Ying QL (2006) Derivation and propagation of embryonic stem cells in serum- and feeder-free culture. Methods Mol Biol 329:91–98

    PubMed  Google Scholar 

  • Shinozawa T, Tsuji A, Imahashi K, Nakashima K, Sawada H, Toyoshiba H, Yamamoto S, Takami K, Imai R (2009) Gene expression profiling of functional murine embryonic stem cell-derived cardiomyocytes and comparison with adult heart: profiling of murine ESC-derived cardiomyocytes. J Biomol Screen 14:239–245

    Article  PubMed  CAS  Google Scholar 

  • Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467:211–213

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365:327–341

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Sands AT (2003) Knockouts model the 100 best-selling drugs—will they model the next 100? Nat Rev Drug Discov 2:38–51

    Article  PubMed  CAS  Google Scholar 

  • Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR, Hu R, Lopez-Guajardo CC, Brose HL, Porter KI, Leonard RA, Hitt AA, Schommer SL, Elegbede AF, Gould MN (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302:1179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yamamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S., Nakata, M., Sasada, R. et al. Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats. Transgenic Res 21, 743–755 (2012). https://doi.org/10.1007/s11248-011-9564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9564-0

Keywords

Navigation