Skip to main content

Advertisement

Log in

Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Development of efficient fuel cell and electrochemical cell devices to retrieve energy in a renewable manner lies in the molecular level understanding of the conversion processes taking place at surfaces and interfaces. These processes involve complicated bond breaking and formation at the surfaces as well as charge transfer through interfaces which are challenging to track under operational conditions. We address the nature of these interfacial processes using ambient pressure X-ray photoelectron spectroscopy by leveraging both its chemical and surface sensitivity. Herein, we give several examples of fuel cell and electrolysis reactions to demonstrate the importance of probing the surface under operating conditions. Oxygen reduction reaction taking place on the platinum cathode in proton exchange membrane fuel cells, water splitting reactions including oxygen evolution reaction over IrO2 and hydrogen evolution reaction over MoSx reveal that different species dominate on the surface under different operational conditions and surface activities are directly related to the stabilities of those intermediate species and possible structural rearrangements of the catalyst material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95(25):255505

    Article  CAS  Google Scholar 

  2. Bazin D, Kovacs I, Guczi L, Parent P, Laffon C, De Groot F, Ducreux O, Lynch J (2000) Genesis of Co/SiO2 catalysts: XAS study at the cobalt L-III, absorption edges. J Catal 189(2):456–462

    Article  CAS  Google Scholar 

  3. de Smit E, de Groot FMF, Blume R, Havecker M, Knop-Gericke A, Weckhuysen BM (2010) The role of Cu on the reduction behavior and surface properties of Fe-based Fischer–Tropsch catalysts. Phys Chem Chem Phys 12(3):667–680

    Article  Google Scholar 

  4. de Smit E, Swart I, Creemer JF, Hoveling GH, Gilles MK, Tyliszczak T, Kooyman PJ, Zandbergen HW, Morin C, Weckhuysen BM, de Groot FMF (2008) Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456(7219):222–225

    Article  Google Scholar 

  5. Delgass WN, Haller GL, Kellerman R, Lunsfor JH (1979) Spectroscopy in Heterogeneous Catalysis. Academic Press, New York

    Google Scholar 

  6. Dumesic JA, Topsoe H (1977) Mössbauer spectroscopy applications to heterogeneous catalysis. Adv Catal 26:121–246

    CAS  Google Scholar 

  7. Ertl G, Knözinger H, Weitkamp J (eds) (1997) Handbook of heterogenous catalysis. VCN, Weinheim

    Google Scholar 

  8. Fisher IA, Bell AT (1997) In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 172(1):222–237

    Article  CAS  Google Scholar 

  9. Frenken J, Hendriksen B (2007) The reactor-STM: a real-space probe for operando nanocatalysis. MRS Bull 32(12):1015–1021

    Article  CAS  Google Scholar 

  10. Friebel D, Miller DJ, O’Grady CP, Anniyev T, Bargar J, Bergmann U, Ogasawara H, Wikfeldt KT, Pettersson LGM, Nilsson A (2010) In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys Chem Chem Phys 13(1):262–266

    Article  Google Scholar 

  11. Gericke AK, Kleimenov E, Hävecker M, Blume R, Teschner D, Zafeiratos S, Schlögl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, Nizovskii AI, Bluhm H, Barinov A, Dudin P, Kiskinova M (2009) X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213–272

    Google Scholar 

  12. Grunwaldt JD, Clausen BS (2002) Combining XRD and EXAFS with on-line catalytic studies for in situ characterization of catalysts. Top Catal 18(1–2):37–43

    Article  CAS  Google Scholar 

  13. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562):2053–2055

    Article  CAS  Google Scholar 

  14. Hansen TW, Wagner JB, Hansen PL, Dahl S, Topsoe H, Jacobsen CJH (2001) Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294(5546):1508–1510

    Article  CAS  Google Scholar 

  15. Hendriksen BLM, Bobaru SC, Frenken JWM (2005) Looking at heterogeneous catalysis at atmospheric pressure using tunnel vision. Top Catal 36(1–4):43–54

    Article  CAS  Google Scholar 

  16. Herbschleb CT, Bobaru SC, Frenken JWM (2010) High-pressure STM study of NO reduction by CO on Pt(100). Catal Today 154(1–2):61–67

    Article  CAS  Google Scholar 

  17. Herranz T, Deng XY, Cabot A, Guo JG, Salmeron M (2009) Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. J Phys Chem B 113(31):10721–10727

    Article  CAS  Google Scholar 

  18. Niemantsverdriet JW (2000) Spectroscopy in catalysis, 2nd edn. Wiley-VCN, Weinheim

    Book  Google Scholar 

  19. Osterlund L, Rasmussen PB, Thostrup P, Laegsgaard E, Stensgaard I, Besenbacher F (2001) Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys Rev Lett 86(3):460–463

    Article  CAS  Google Scholar 

  20. Prins R, Koningsberger DC (eds) (1998) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  21. Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63(4):169–199

    Article  CAS  Google Scholar 

  22. Singh J, Lamberti C, van Bokhoven JA (2010) Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 39(12):4754–4766

    Article  CAS  Google Scholar 

  23. Somorjai GA (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, New York

    Google Scholar 

  24. Somorjai GA, Li YM (2011) Impact of surface chemistry. Proc Natl Acad Sci USA 108(3):917–924

    Article  CAS  Google Scholar 

  25. Stierle A, Molenbroek AM (2007) Novel in situ probes for nanocatalysis. MRS Bull 32(12):1001–1005

    Article  Google Scholar 

  26. Thomas JM, Somorjai GA (1999) Untitled—preface. Top Catal 8(1–2):U1–U1

    Article  Google Scholar 

  27. Topsoe H (2003) Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal 216(1–2):155–164

    Article  CAS  Google Scholar 

  28. Yamamoto S, Bluhm H, Andersson K, Ketteler G, Ogasawara H, Salmeron M, Nilsson A (2008) In situ x-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J Phys Condens Matter 20(18):184025

    Article  Google Scholar 

  29. Nilsson A (2002) Applications of core level spectroscopy to adsorbates. J Electron Spectrosc Relat Phenom 126(1–3):3–42

    Article  CAS  Google Scholar 

  30. Kaya S, Ogasawara H, Näslund L-Å, Forsell J-O, Casalongue HS, Miller DJ, Nilsson A (2013) Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal Today 205:101–105

    Article  CAS  Google Scholar 

  31. Casalongue HS, Kaya S, Viswanathan V, Miller DJ, Friebel D, Hansen HA, Nørskov JK, Nilsson A, Ogasawara H (2013) Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat Commun 4:2817–2822

    Article  Google Scholar 

  32. Casalongue HGS, Benck JD, Tsai C, Karlsson RKB, Kaya S, Ng ML, Pettersson LGM, Abild-Pedersen F, Nørskov JK, Ogasawara H, Jaramillo TF, Nilsson A (2014) Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J Phys Chem C 118(50):29252–29259

    Article  CAS  Google Scholar 

  33. Sanchez Casalongue HG, Ng ML, Kaya S, Friebel D, Ogasawara H, Nilsson A (2014) In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew Chem Int Ed 53(28):7169–7172

    Article  CAS  Google Scholar 

  34. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  35. Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1–2):249–259

    Article  CAS  Google Scholar 

  36. Wang JX, Uribe FA, Springer TE, Zhang J, Adzic RR (2009) Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss 140:347–362

    Article  Google Scholar 

  37. Wang JX, Zhang J, Adzic RR (2007) Double-trap kinetic equation for the oxygen reduction reaction on pt(111) in acidic media. J Phys Chem A 111(49):12702–12710

    Article  CAS  Google Scholar 

  38. Schiros T, Näslund LÅ, Andersson K, Gyllenpalm J, Karlberg GS, Odelius M, Ogasawara H, Pettersson LGM, Nilsson A (2007) Structure and bonding of the water–hydroxyl mixed phase on Pt(111). J Phys Chem C 111(41):15003–15012

    Article  CAS  Google Scholar 

  39. MacNaughton JB, Näslund L-A, Anniyev T, Ogasawara H, Nilsson A (2010) Peroxide-like intermediate observed at hydrogen rich condition on Pt(111) after interaction with oxygen. Phys Chem Chem Phys 12(21):5712–5716

    Article  CAS  Google Scholar 

  40. Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat Mater 9(11):904–907

    Article  CAS  Google Scholar 

  41. Ogasawara H, Naslund LA, McNaughton J, Anniyev T, Nilsson A (2008) Double role of water in the fuel cell oxygen reduction reaction. ECS Trans 16(2):1385–1394

    Article  CAS  Google Scholar 

  42. Schiros T, Ogasawara H, Näslund LÅ, Andersson KJ, Ren J, Meng S, Karlberg GS, Odelius M, Nilsson A, Pettersson LGM (2010) Cooperativity in surface bonding and hydrogen bonding of water and hydroxyl at metal surfaces. J Phys Chem C 114(22):10240–10248

    Article  CAS  Google Scholar 

  43. Hitotsuyanagi A, Nakamura M, Hoshi N (2012) Structural effects on the activity for the oxygen reduction reaction on n(111)–(100) series of Pt: correlation with the oxide film formation. Electrochim Acta 82:512–516

    Article  CAS  Google Scholar 

  44. Maciá MD, Campiña JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564:141–150

    Article  Google Scholar 

  45. Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22(5):163–170

    Article  CAS  Google Scholar 

  46. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987

    Article  CAS  Google Scholar 

  47. Pauporté T, Andolfatto F, Durand R (1999) Some electrocatalytic properties of anodic iridium oxide nanoparticles in acidic solution. Electrochim Acta 45(3):431–439

    Article  Google Scholar 

  48. Steegstra P, Ahlberg E (2012) In situ pH measurements with hydrous iridium oxide in a rotating ring disc configuration. J Electroanal Chem 685:1–7

    Article  CAS  Google Scholar 

  49. Yagi M, Tomita E, Kuwabara T (2005) Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation. J Electroanal Chem 579(1):83–88

    Article  CAS  Google Scholar 

  50. Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133(19):7264–7267

    Article  CAS  Google Scholar 

  51. Bozack MJ (1993) Sputter-induced modifications of IrO2 during XPS measurements. Surf Sci Spectra 2(2):123–127

    Article  CAS  Google Scholar 

  52. Augustynski J, Koudelka M, Sanchez J, Conway BE (1984) ESCA study of the state of iridium and oxygen in electrochemically and thermally formed iridium oxide films. J Electroanal Chem Interfacial Electrochem 160(1–2):233–248

    Article  CAS  Google Scholar 

  53. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89

    Article  CAS  Google Scholar 

  54. Steegstra P, Ahlberg E (2012) Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim Acta 76:26–33

    Article  CAS  Google Scholar 

  55. Kötz R, Neff H, Stucki S (1984) Anodic iridium oxide films: XPS-studies of oxidation state changes and O2-evolution. J Electrochem Soc 131(1):72–77

    Article  Google Scholar 

  56. Lyons MEG, Floquet S (2011) Mechanism of oxygen reactions at porous oxide electrodes. part 2-Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution. Phys Chem Chem Phys 13(12):5314–5335

    Article  CAS  Google Scholar 

  57. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309

    Article  CAS  Google Scholar 

  58. Yan Y, Xia B, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4(6):1693–1705

    Article  CAS  Google Scholar 

  59. Wu Z, Fang B, Wang Z, Wang C, Liu Z, Liu F, Wang W, Alfantazi A, Wang D, Wilkinson DP (2013) MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal 3(9):2101–2107

    Article  CAS  Google Scholar 

  60. Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2(9):1916–1923

    Article  CAS  Google Scholar 

  61. Merki D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4(10):3878–3888

    Article  CAS  Google Scholar 

  62. Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5(3):6136–6144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all the people involved in the various projects on which this contribution is based. In particular we like to highlight Hernan G. Sanchez Casalongue unique contribution to this project. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, as follows: the experimental work was supported by the Joint Center for Artificial Photosynthesis award no. DE-SC0004993. H.O. gratefully acknowledges the support from Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Nilsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, H., Kaya, S. & Nilsson, A. Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems. Top Catal 59, 439–447 (2016). https://doi.org/10.1007/s11244-015-0525-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0525-3

Keywords

Navigation