Skip to main content

Advertisement

Log in

Aromatic Alcohols as Model Molecules for Studying Hydrogenolysis Reactions Promoted by Palladium Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The hydrogenolysis reaction of aromatic alcohols (benzyl alcohol, 1-phenylethanol and diphenylmethanol), promoted by supported palladium catalysts, such as Pd/TiO2, Pd/SiO2 and Pd/Co3O4, has been investigated at 0.1 MPa H2 and 323 K. The catalysts have been characterized by BET, TPR, XRD, TEM and XPS. A different kinetic behaviour was observed: in presence of Pd/TiO2 and Pd/SiO2 catalysts, prepared by impregnation, the hydrogenolysis activity follows the order benzyl alcohol > 1-phenylethanol ≥ diphenylmethanol, whereas it is totally reversed on Pd/Co3O4, prepared by co-precipitation. All results indicate that the reactivity of supported Pd catalysts, in the hydrogenolysis reaction, depends on the support nature, the preparation method of catalysts and the aromatic alcohols structure. Kinetic experiments carried out at different partial hydrogen pressure allow to elucidate the pathway of the C–OH bond scission, involving a radical substitution of the carbon bonded OH group by a hydrogen atom coming from the metal surface “via” associative and dissociative paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ranade VS, Prins S (2000) Chem Eur J 6:313–320

    Article  CAS  Google Scholar 

  2. Yasuda M, Onishi Y, Sato Y, Ueba M, Miyai T, Baba A (2001) J Org Chem 66:7741–7744

    Article  CAS  Google Scholar 

  3. Muzart J (2005) Tetrahedron 61:9423–9463

    Article  CAS  Google Scholar 

  4. Sclaf M (2006) Dalton Trans 21(39):4645–4653

    Article  Google Scholar 

  5. Feng J, Yuan M, Chen H, Li X (2007) Prog Chem 19:651–658

    CAS  Google Scholar 

  6. Delbecq F, Sautet P (1995) J Catal 152:217–236

    Article  CAS  Google Scholar 

  7. Sato S, Takahashi R, Sodesawa T, Koubata M (2005) Appl Catal A 284:247–251

    Article  CAS  Google Scholar 

  8. Musolino MG, Busacca C, Mauriello F, Pietropaolo R (2010) Appl Catal A 379:77–86

    Article  CAS  Google Scholar 

  9. Kieboom APG, De Kreuk JF, Van Bekkum H (1971) J Catal 20:58–66

    Article  CAS  Google Scholar 

  10. Gross BH, Mebane RC, Armstrong DL (2001) Appl Catal A 219:281–289

    Article  CAS  Google Scholar 

  11. Feng J, Yang C, Zhang D, Wang J, Fu H, Chen H, Li X (2009) Appl Catal A 354:38–43

    Article  CAS  Google Scholar 

  12. Thakar N, Polder NF, Djanashvili K, van Bekkum H, Kapteijn F, Moulijn JA (2007) J Catal 246:344–350

    Article  CAS  Google Scholar 

  13. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chem Soc Rev 37:527–549

    Article  Google Scholar 

  14. Mauriello F, Musolino MG, Pietropaolo R (2012) In: De Santos Silva M, Ferreira PC (eds) Glycerol: production, structure and applications. Nova Science Publishers, Inc., Hauppauge, pp 45–76

    Google Scholar 

  15. Musolino MG, Scarpino LA, Mauriello F, Pietropaolo R (2009) Green Chem 11:1511–1513

    Article  CAS  Google Scholar 

  16. Musolino MG, Scarpino LA, Mauriello F, Pietropaolo R (2011) ChemSusChem 4:1143–1150

    Article  CAS  Google Scholar 

  17. Mauriello F, Ariga A, Musolino MG, Pietropaolo R, Takakusagi R, Asakura K (2015) Appl Catal B 166–167:121–131

    Article  Google Scholar 

  18. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

  19. Mauriello F, Armandi M, Bonelli B, Onida B, Garrone E (2010) J Phys Chem C 114(42):18233–18239

    Article  CAS  Google Scholar 

  20. Gusovius AF, Watling TC, Prins R (1999) Appl Catal A 188:187–199

    Article  CAS  Google Scholar 

  21. Noronha FB, Schmal M, Nicot C, Moraweck B, Fréty R (1997) J Catal 168:42–50

    Article  CAS  Google Scholar 

  22. Shen WJ, Okumura M, Matsumura Y, Haruta M (2001) Appl Catal A 213:225–232

    Article  CAS  Google Scholar 

  23. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie

    Google Scholar 

  24. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A (1998) Catal Today 39:329–341

    Article  CAS  Google Scholar 

  25. Noronha FB, Schmal M, Moraweck B, Delichère P, Brun M, Villain F, Fréty R (2000) J Phys Chem B 104:5478–5485

    Article  CAS  Google Scholar 

  26. Musolino MG, Mauriello F, Busacca C, Pietropaolo R (2015) Catal Today 241:208–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Musolino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musolino, M.G., Mauriello, F., Busacca, C. et al. Aromatic Alcohols as Model Molecules for Studying Hydrogenolysis Reactions Promoted by Palladium Catalysts. Top Catal 58, 1077–1084 (2015). https://doi.org/10.1007/s11244-015-0476-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0476-8

Keywords

Navigation