Skip to main content

Advertisement

Log in

The Effect of Uranium Cations on the Redox Properties of CeO2 Within the Context of Hydrogen Production from Water

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of U cations on the reduction of CeO2 is studied by modeling the Ce1−xUxO2 systems with density functional theory (DFT) at the GGA + U (U = 5.0 eV) level of theory. Oxygen-vacancy formation energies (EOvac) are influenced by substituting Ce4+ cations in CeO2 by U4+ cations. The pDOS analyses indicate charge transfer mechanism from the O2p and U5f orbitals to the Ce4f orbitals upon the creation of an oxygen vacancy resulting in the reduction of three Ce4+ cations (instead of two in the un-doped system) to three Ce3+ cations. A linear correlation between EOvac and U content has been found which may explain the initially observed experimental correlation between H2 production from water on this system. The increased hydrogen production from water using mixed charged elements (such as Ce and U in this work) may be rationally designed computationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting. J Mater Sci 45:4163–4173

    Article  CAS  Google Scholar 

  2. Zhu X, Wang H, Wei Y, Li K, Cheng X (2011) Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier. J Nat Gas Chem 20:281–286

    Article  CAS  Google Scholar 

  3. Al-Salik Y, Al-Shankiti I, Idriss H (2013) Core level spectroscopy of oxidized and reduced CexU1−xO2 materials. J. Electron Spectrosc Relat Phenom 194:66–73

    Article  Google Scholar 

  4. Al-Shankiti I, Al-Otaibi F, Al-Salik Y, Idriss H (2013) Solar thermal hydrogen production from water over modified CeO2 materials. Top Catal 56:1129–1138

    Article  CAS  Google Scholar 

  5. Chueh WC, Falter C, Abbott M, Scipio D, Furler P et al (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:1797–1801

    Article  CAS  Google Scholar 

  6. Steinfeld A (2005) Solar thermochemical production of hydrogen—a review. Sol Energy 78:603–615

    Article  CAS  Google Scholar 

  7. Abanades S, Flamant G (2006) Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 80:1611–1623

    Article  CAS  Google Scholar 

  8. Le Gal A, Abanades S (2012) Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation. J Phys Chem C 116:13516–13523

    Article  Google Scholar 

  9. Meng Q-L, Lee C-I, Ishihara T, Kaneko H, Tamaura Y (2011) Reactivity of CeO2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy. Int J Hydrog Energy 36:13435–13441

    Article  CAS  Google Scholar 

  10. Yang Z, Woo TK, Hermansson K (2006) Effects of Zr doping on stoichiometric and reduced ceria: a first-principles study. J Chem Phys 124:224704

    Article  Google Scholar 

  11. Dholabhai PP, Adams JB, Crozier P, Sharma R (2010) Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT + U study. J Chem Phys. 132:094104

    Article  Google Scholar 

  12. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2007) Redox properties of CeO2–MO2 (M = Ti, Zr, Hf, or Th) solid solutions from first principles calculations. Appl Phys Lett 90:031909

    Article  Google Scholar 

  13. Xu W, Si R, Senanayake SD, Llorca J, Idriss H et al (2012) In situ studies of CeO2-supported Pt, Ru, and Pt-Ru alloy catalysts for the water-gas shift reaction: active phases and reaction intermediates. J Catal 291:117–126

    Article  CAS  Google Scholar 

  14. Diagne C, Idriss H, Kiennemann A (2002) Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catal Commun 3:565–571

    Article  CAS  Google Scholar 

  15. Idriss H (2010) Surface reactions of uranium oxide powder, thin films and single crystals. Surf Sci Rep 65:67–109

    Article  CAS  Google Scholar 

  16. Hanken BE, Stanek CR, Grønbech-Jensen N, Asta M (2011) Computational study of the energetics of charge and cation mixing in U1−xCexO2. Phys Rev B 84:085131

    Article  Google Scholar 

  17. Hinatsu Y, Fujino T (1988) Studies on magnetic properties of UO2-CeO2 solid solutions. II. Effect of oxygen nonstoichiometry on magnetic susceptibilities of solid solutions. J Solid State Chem 76:124–130

    Article  CAS  Google Scholar 

  18. Antonio MR, Staub U, Xue JS, Soderholm L (1996) Comparison of the cation valence and coordination in Ce2UO6 and Ce2MoO6. Chem Mater 8:2673–2680

    Article  CAS  Google Scholar 

  19. Bera S, Mittal VK, Venkata Krishnan R, Saravanan T, Velmurugan S et al (2009) XPS analysis of UxCe1-xO2±δ and determination of oxygen to metal ratio. J Nucl Mater 393:120–125

    Article  CAS  Google Scholar 

  20. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  22. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  24. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  25. Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985

    Article  CAS  Google Scholar 

  26. Lorenzelli R, Touzelin B (1980) Sur le système UO2-CeO2; étude cristallographique à haute température. J Nucl Mater 95:290–302

    Article  CAS  Google Scholar 

  27. Magneli AK, Kihlborg L (1951) On the cerium dioxide-uranium dioxide system and uranium cerium blue. Acta Chem Scand 5:3

    Google Scholar 

  28. Frazer BC, Shirane G, Cox DE, Olsen CE (1965) Neutron-diffraction study of antiferromagnetism in UO2. Phys Rev 140:A1448–A1452

    Article  Google Scholar 

  29. Yu J, Devanathan R, Weber WJ (2009) First-principles study of defects and phase transition in UO2. J Phys Condens Matter 21:435401

    Article  Google Scholar 

  30. Markin TL, Street RS, Crouch EC (1970) The uranium-cerium-oxygen ternary phase diagram. J Inorg Nucl Chem 32:59–75

    Article  CAS  Google Scholar 

  31. Dorado B, Garcia P (2013) First-principles DFT + U modeling of actinide-based alloys: application to paramagnetic phases of UO2 and (U, Pu) mixed oxides. Phys Rev 87:195139

    Article  Google Scholar 

  32. Caciuffo R, Magnani N, Santini P, Carretta S, Amoretti G et al (2007) Anisotropic magnetic fluctuations in 3-k antiferromagnets. J Magn Magn Mater 310:1698–1702

    Article  CAS  Google Scholar 

  33. Gryaznov D, Heifets E, Sedmidubsky D (2010) Density functional theory calculations on magnetic properties of actinide compounds. Phys Chem Chem Phys 12:12273–12278

    Article  CAS  Google Scholar 

  34. Yun YS, Park KH, Kim HC, Kim HM (2005) Ab initio calculations of strongly correlated electrons; antiferromagnetic ground state of UO2. Nucl Eng Technol 37:293–298

    CAS  Google Scholar 

  35. Mayernick AD, Janik MJ (2008) Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J Phys Chem C 112:14955–14964

    Article  CAS  Google Scholar 

  36. Idriss H, Al-Shankiti I, Choi YM, Al-Otaibi F (2013) Catalyst for thermochemical generation of hydrogen from water and/or thermochemical generation of carbon monoxide from carbon dioxide comprises solid solution of cerium dioxide and uranium dioxide. Patent Number(s): EP2690060-A1; WO2014016790-A1

  37. Hinatsu Y, Fujino T (1988) Studies on magnetic properties of UO2-CeO2 solid solutions. I. Magnetic susceptibilities of solid solutions with low cerium concentrations. J Solid State Chem 73:348–355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KAUST Supercomputing Laboratory is gratefully acknowledged for the allocated computing time. Special thanks to Dr. YongMan Choi for his help in the initial part of the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica Scaranto or Hicham Idriss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaranto, J., Idriss, H. The Effect of Uranium Cations on the Redox Properties of CeO2 Within the Context of Hydrogen Production from Water. Top Catal 58, 143–148 (2015). https://doi.org/10.1007/s11244-014-0353-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0353-x

Keywords

Navigation