Skip to main content
Log in

Density functional theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using OpenMX quantum chemistry software for self-consistent field calculations of electronic structure with geometry optimization and 3D-RISM-KH molecular theory of solvation for 3D site distribution functions and solvation free energy, we modeled the reduction of CO2+H2 in ambient aqueous electrolyte solution of 1.0-M KH2PO4 into (i) formic acid HCOOH and (ii) CO H2O on the surfaces of Cu-, Fe-, Cu2O-, and Fe3O4-based nanocatalysts. It is applicable to its further reduction to hydrocarbons. The optimized geometries and free energies were obtained for the pathways of adsorption of the reactants from the solution, successive reduction on the surfaces of the nanocatalysts, and then release back to the solution bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ross MB, De Luna P, Li Y, Dinh C-T, Kim D, Yang P, Sargent EH (2019). Nat Catal 2:648–658

    Article  CAS  Google Scholar 

  2. He J, Johnson NJJ, Huang A, Berlinguette CP (2018). ChemSusChem 11:48–57

    Article  CAS  Google Scholar 

  3. Zhou H, Liu K, Li H, Cao M, Fu J, Gao X, Hu J, Li W, Pan H, Zhan J, Li Q, Qiu X, Liu M (2019). J Colloid Interf Sci 550:17–47

    Article  CAS  Google Scholar 

  4. Rahbari A, Ramdin M, van den Broeke LJP, Vlugt TJH (2018). Ind Eng Chem Res 57:10663–10674

    Article  CAS  Google Scholar 

  5. Yoshio H, Katsuhei K, Shin S (1985). Chem Lett 11:1695–1698

    Google Scholar 

  6. Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu LJ (1997). Appl Electrochem 27:875–889

    Article  CAS  Google Scholar 

  7. Hori Y, Murata A, Takahashi R. J Chem Soc Farad Trans 1989, 85(8):2309–2326

  8. Hori Y, Takahashi R, Yoshinami Y, Murata A (1997). J Phys Chem B 101:7075–7081

    Article  CAS  Google Scholar 

  9. Kortlever R, Shen J, Schouten KJ, Calle-Vallejo F, Koper MT (2015). J Phys Chem Lett 6(20):4073–4082

    Article  CAS  Google Scholar 

  10. Li C, Kanan MW (2012). J Am Chem Soc 134:7231–7234

    Article  CAS  Google Scholar 

  11. Li C, Ciston J, Kanak MW (2014). Nature 508:504–507

    Article  CAS  Google Scholar 

  12. Roberts FS, Kuhl KP, Nilsson A (2015). Angew Chem Int Ed 54:5179–5182

    Article  CAS  Google Scholar 

  13. Kumar N, Seriani N, Gebauer R (2020 (in press)). Phys Chem Chem Phys. https://doi.org/10.1039/C9CP06453B

  14. Wang YD, Hua XN, Zhao CC, Fu TT, Li W, Wang W (2017). Int J Hydrog Energy 42(9):5667–5675

    Article  CAS  Google Scholar 

  15. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF (2017). ACS Catal 7:4822–4827

    Article  CAS  Google Scholar 

  16. Choi S, Sang B-I, Hong J, Yoon KJ, Son J-W, Lee J-H, Kim B-K, Kim H (2017). Sci Rep 7:41207–41210

    Article  CAS  Google Scholar 

  17. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TFJ (2014). Am Chem Soc 136:14107–14113

    Article  CAS  Google Scholar 

  18. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012). Energy Environ Sci 5:7050–7059

    Article  CAS  Google Scholar 

  19. Hatsukade T, Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2014). Phys Chem Chem Phys 16:13814–13819

    Article  CAS  Google Scholar 

  20. Lejaeghere K et al (2016). Science 351((6280)):aad3000

    Article  CAS  Google Scholar 

  21. Kovalenko A (2013). Pure Appl Chem 85:159–199

    Article  CAS  Google Scholar 

  22. Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer Handbook of Electrochemistry. Springer-Verlag, Berlin, pp 95–139 1016 p

    Chapter  Google Scholar 

  23. Kovalenko A, Gusarov S (2018). Phys Chem Chem Phys 20:2947–2969

    Article  CAS  Google Scholar 

  24. Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WMJ (1992). Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  25. Case DA, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham III TE, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke H, Goetz AW, Harris R, Izadi S, Kasava-jhala K, Kovalenko A, Krasny R, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Man V, Merz KM, Miao Y, Mikhailovskii O, Monard G, Nguyen H, Onufriev A, Pan F, Pantano S, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Skrynnikov N, Smith J, Swails J, Walker RC, Wang J, Wilson L, Wolf RM, Wu X, York DM, Kollman PA (2020) AMBER 2020. University of California, San Francisco. https://ambermd.org/

    Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  27. Chandler D, McCoy JD, Singer SJ (1986) Density functional theory of nonuniform polyatomic systems. I. General Formulation. J Chem Phys 85:5971–5976

    Article  CAS  Google Scholar 

  28. Chandler D, McCoy JD, Singer SJ (1986) Density functional theory of nonuniform polyatomic systems. II. Rational Closures for Integral Equations. J Chem Phys 85:5977–5982

    Article  CAS  Google Scholar 

  29. Hansen J-P, McDonald IR (2006) Theory of simple liquids3rd edn. Elsevier Academic Press, London Burlington

    Google Scholar 

  30. Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J-LJ (2017). Am Chem Soc 139:2160–2163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Generous computing time provided by Compute Canada/Calcul Canada (www.computecanada.ca) is acknowledged.

Funding

This work was financially supported by the National Research Council of Canada, Research Grant A1-015524-01 0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Kovalenko.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, A., Neburchilov, V. Density functional theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts. J Mol Model 26, 267 (2020). https://doi.org/10.1007/s00894-020-04529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04529-8

Keywords

Navigation