Skip to main content
Log in

Growth and Structure of Ni–Au Bimetallic Particles on Reducible CeO2(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The growth and sintering behavior of Ni–Au have been investigated on CeOx(111) (1.5 < x < 2) thin films with controlled oxidation states under ultrahigh vacuum conditions. Scanning tunneling microscopy studies reveal that pure Au grows three-dimensional particles with a submonolayer coverage at room temperature, while Ni prefers two-dimensional islands on ceria as a result of a stronger metal–ceria interaction. With heating, Au experiences extensive particle growth compared to Ni. In the study, bimetallic Ni–Au particles were prepared by deposition of 0.3 ML Ni followed by 0.3 ML Au on ceria. A larger fraction of deposited Au on the Ni particles dispersed on ceria. A small percent of Au was observed to form new pure Au particles on both ceria surfaces. With heating, both Au and Ni–Au particles sinter on CeO1.8 resulting in a bimodal particle size distribution. However, mostly Ni–Au bimetallic particles are present on CeO2. The different sintering behavior is attributed to the surface defects present on the reduced ceria. Such behavior was also observed in the study of ceria-supported Pt–Au bimetallic particles. Our study demonstrates that bimetallic Ni–Au particles can be prepared by deposition of Au on the existing Ni particles as “seeds” on both oxidized and partially reduced ceria. The growth and sintering behavior of Ni–Au bimetallic surfaces are dependent on the nature of ceria supports. Our study can provide morphological and size information for the understanding of the activity of ceria-supported Ni–Au catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodriguez JA (2011) Catal Today 160:3–10

    Article  CAS  Google Scholar 

  2. Rodriguez JA, Liu P, Hrbek J, Evans J, Perez M (2007) Angew Chem—Int Ed 46:1329–1332

    Article  CAS  Google Scholar 

  3. Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund HJ (2009) J Phys Chem C113:6042–6049

    Google Scholar 

  4. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–938

    Article  CAS  Google Scholar 

  5. Camellone MF, Fabris S (2009) J Am Chem Soc 131:10473–10483

    Article  Google Scholar 

  6. Ghosh P, Camellone MF, Fabris S (2013) J Phys Chem Lett 4:2256–2263

    Article  CAS  Google Scholar 

  7. Kantcheva M, Samarskaya O, Ilieva L, Pantaleo G, Venezia AM, Andreeva D (2009) Appl Catal B-Environ 88:113–126

    Article  CAS  Google Scholar 

  8. Chen Y, Wang HF, Burch R, Hardacre C, Hu P (2011) Faraday Discuss. 152:121–133

    Article  CAS  Google Scholar 

  9. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993–997

    Article  CAS  Google Scholar 

  10. Skoplyak O, Barteau MA, Chen JGG (2006) J Phys Chem B 110:1686–1694

    Article  CAS  Google Scholar 

  11. Senanayake SD, Evans J, Agnoli S, Barrio L, Chen T-L, Hrbek J, Rodriguez JA (2011) Top Catal 54:34–41

    Article  CAS  Google Scholar 

  12. Tenney SA, He W, Roberts CC, Ratliff JS, Shah SI, Shafai GS, Turkowski V, Rahman TS, Chen DA (2011) J Phys Chem C 115:11112–11123

    Article  CAS  Google Scholar 

  13. Zhou Y, Zhou J (2012) J Phys Chem C 116:9544–9549

    Article  CAS  Google Scholar 

  14. Gates SM, Russell JN, Yates JT (1986) Surf Sci 171:111–134

    Article  CAS  Google Scholar 

  15. Takenaka S, Ogihara H, Yamanaka I, Otsuka K (2001) Appl Catal A-Gen 217:101–110

    Article  CAS  Google Scholar 

  16. Molenbroek AM, Norskov JK, Clausen BS (2001) J Phys Chem B 105:5450–5458

    Article  CAS  Google Scholar 

  17. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I (1998) Science 279:1913–1915

    Article  CAS  Google Scholar 

  18. Chin Y-H, King DL, Roh H-S, Wang Y, Heald SM (2006) J Catal 244:153–162

    Article  CAS  Google Scholar 

  19. Zhou Y, Perket JM, Zhou J (2010) J Phys Chem C 114:11853–11854

    Google Scholar 

  20. Zhou Y, Peterson EW, Zhou J (2015) Catal Today 240:201–205

    Article  CAS  Google Scholar 

  21. Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2006) Surf Sci 600:5004–5010

    Article  CAS  Google Scholar 

  22. Zhou Y, Perket JM, Crooks AB, Zhou J (2010) J Phys Chem Lett 1:1447–1453

    Article  CAS  Google Scholar 

  23. Weststrate CJ, Westerstrom R, Lundgren E, Mikkelsen A, Andersen JN (2009) J Phys Chem C 113:724–728

    Article  CAS  Google Scholar 

  24. Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2007) Catal Lett 114:8–16

    Article  CAS  Google Scholar 

  25. Pan Y, Cui Y, Stiehler C, Nilius N, Freund HJ (2013) J Phys Chem C 117:21879–21885

    Article  CAS  Google Scholar 

  26. Pan Y, Nilius N, Freund HJ, Paier J, Penschke C, Sauer J (2013) Phys Rev Lett 111:206101–206105

    Google Scholar 

  27. Campbell CT (1997) Surf Sci Rep 27:1–111

    Article  CAS  Google Scholar 

  28. Chatain D, Rivollet I, Eustathopoulos N (1986) J Chim Phys Phys-Chim Biol 83:561–567

    CAS  Google Scholar 

  29. Peden CHF, Kidd KB, Shinn ND (1991) J Vac Sci Technol A 9:1518–1524

    Article  CAS  Google Scholar 

  30. Tenney SA, He W, Ratliff JS, Mullins DR, Chen DA (2011) Top Catal 54:42–55

    Article  CAS  Google Scholar 

  31. Taylor MB, Sims CE, Barrera GD, Allan NL, Mackrodt WC (1999) Phys Rev B 59:6742–6751

    Article  CAS  Google Scholar 

  32. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217–229

    Article  CAS  Google Scholar 

  33. Castellani NJ, Branda MA, Neyman KM, Illas F (2009) J Phys Chem C 113:4948–4954

    Article  CAS  Google Scholar 

  34. Sangiorgi R, Muolo ML, Chatain D, Eustathopoulos N (1988) J Am Ceram Soc 71:742–748

    Article  CAS  Google Scholar 

  35. Skoda M, Cabala M, Matolinova I, Prince KC, Skala T, Sutara F, Veltruska K, Matolin V (2009) J Chem Phys 130:034703

    Article  CAS  Google Scholar 

  36. Naya K, Ishikawa R, Fukui K (2009) J Phys Chem C 113:10726–10730

    Article  CAS  Google Scholar 

  37. Zhou J, Kang YC, Chen DA (2003) Surf Sci 537:L429–L434

    Article  CAS  Google Scholar 

  38. Park JB, Conner SF, Chen DA (2008) J Phys Chem C 112:5490–5500

    Article  CAS  Google Scholar 

  39. Lide DR (ed) (2003–2004) CRC handbook of chemistry and physics. 84th ed. CRC Press, Boston

  40. Zhou J, Ma S, Kang YC, Chen DA (2004) J Phys Chem B 108:11633–11644

    Article  CAS  Google Scholar 

  41. Chen MS, Goodman DW (2008) Chem Soc Rev 37:1860–1870

    Article  CAS  Google Scholar 

  42. Wang Z-J, Fu Q, Wang Z, Bao X (2012) Surf Sci 606:1313–1322

  43. Zhu WJ, Zhang J, Gong XQ, Lu GZ (2011) Catal Today 165:19–24

    Article  CAS  Google Scholar 

  44. Zhang C, Michaelides A, King DA, Jenkins SJ (2008) J Chem Phys 129:194708

    Article  Google Scholar 

  45. Zhou Y, Zhou J (2010) J Phys Chem Lett 1:609–615

    Article  CAS  Google Scholar 

  46. Tenney SA, Ratliff JS, Roberts CC, He W, Ammal SC, Heyden A, Chen DA (2010) J Phys Chem C 114:21652–21663

  47. Mullins DR, Zhang KZ (2002) Surf Sci 513:163–173

    Article  CAS  Google Scholar 

  48. Dulub O, Hebenstreit W, Diebold U (2000) Phys Rev Lett 84:3646–3649

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research is sponsored by University of Wyoming start-up funds and National Science Foundation (Grant No: CHE1151846). In addition, Yinghui Zhou wants to acknowledge the support from Natural Science Foundation of Fujian Province of China (No. 2014J05011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Peterson, E.W. & Zhou, J. Growth and Structure of Ni–Au Bimetallic Particles on Reducible CeO2(111). Top Catal 58, 134–142 (2015). https://doi.org/10.1007/s11244-014-0352-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0352-y

Keywords

Navigation