Skip to main content
Log in

Synthesis, structures and properties of three copper complexes created via in situ ligand cross-coupling reactions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three copper complexes {[Cu2(L1)2]·I3} n (1), [Cu(L2)2] (2), and [Cu2I2(L3)2(MBI)2] (3) (MBI = 2-mercaptobenzimidazole, L1 = N-(benzothiazol-2-yl)acetamidine anion, L2 = N-(thiazol-2-yl) acetamidine anion, L3 = 3-methyl-[1,2,4]thiadiazolo[4,5-a]benzimidazole) have been synthesized solvothermally by the reactions of CuI with 2-benzothiazolamine, 2-aminothiazole and 2-mercaptobenzimidazole (MBI), respectively, in acetonitrile. In situ C–N (or C–S) cross-coupling ligand reactions were observed in all three complexes, and hypothetical reaction mechanisms are proposed for the formation of the ligands and their complexes. The single-crystal X-ray structural analysis reveals that both the Cu(II) and Cu(I) atoms are located in pseudo-tetrahedral environments in complex 1, and L1 acts as a double bidentate ligand which coordinates with the Cu(I) and Cu(II) atoms to form a 1D coordination polymer. Unlike complex 1, the Cu(II) atom in complex 2 is in a square planar geometry, coordinated by two L2 ligands with relatively small steric hindrance. In complex 3, the Cu(I) atoms have a distorted tetrahedral geometry, being coordinated by one nitrogen atom from L3, two sulfur atoms of MBI ligands, and one iodide. The sulfur atoms from MBI ligands bridge two Cu(I) atoms to form a binuclear complex. All three complexes exhibit relatively high thermal stabilities. Complex 1 displays intense fluorescence emission at 382 nm and complex 3 displays two intense fluorescence emissions at 401 and 555 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen XM, Tong ML (2007) Acc Chem Res 40:162

    Article  Google Scholar 

  2. Zhang XM (2005) Coord Chem Rev 249:1201

    Article  CAS  Google Scholar 

  3. Han ZB, He YK, Ge CH, Ribas J, Xu L (2007) Dalton Trans 28:3020

    Article  Google Scholar 

  4. Yang WB, Liu C, Qiu JS (2010) Chem Commun 46:2659

    Article  CAS  Google Scholar 

  5. Qiu YC, Li YH, Peng G, Cai JB, Jin LM, Ma L, Peng H, Zeller M, Batten SR (2010) Cryst Growth Des 10:1332

    Article  CAS  Google Scholar 

  6. Hu XX, Xu JQ, Cheng P, Chen XY, Cui XY, Song JF, Yang GD, Wang TG (2004) Inorg Chem 43:2261

    Article  CAS  Google Scholar 

  7. Wang SH, Zheng FK, Wu MF, Liu ZF, Chen J, Guo GC, Huang JS (2012) Inorg Chem Commun 24:186

    Article  CAS  Google Scholar 

  8. Sheldrick GM (1996) SADABS. Program for area detector adsorption correction. Institute for Inorganic Chemistry, University of Gottingen, Germany

    Google Scholar 

  9. Sheldrick GM (1997) SHELX-97. Program for the solution of crystal structures. University of Goettingen, Germany

    Google Scholar 

  10. Rousselet G, Capdevielle P, Maumy M (1993) Tetrahedron Lett 34:6395

    Article  CAS  Google Scholar 

  11. Deng YH, Liu J, Zhang QJ, Li F, Yang YL, Li PZ, Ma J (2008) Inorg Chem Commun 11:433

    Article  CAS  Google Scholar 

  12. Bishop MM, Lindoy LF, Miller DJ Turner P (2002) J Chem Soc Dalton Trans 4128. doi:10.1039/b207031f

  13. Xu F, Sun JH, Shen Q (2002) Tetrahedron Lett 43:1867

    Article  CAS  Google Scholar 

  14. Brown ID, Altermatt D (1985) Acta Crystallogr B41:244

    Article  CAS  Google Scholar 

  15. Thorp HH (1992) Inorg Chem 31:1585

    Article  CAS  Google Scholar 

  16. Peng R, Li M, Li D (2010) Coord Chem Rev 254:1

    Article  CAS  Google Scholar 

  17. Fang SM, Zhang Q, Hu M, Xiao B, Zhou LM, Sun GH, Gao LJ, Du M, Liu CS (2010) CrystEngComm 12:2203

    Article  CAS  Google Scholar 

  18. Perruchas S, Goff XFL, Maron S, Maurin I, Guillen F, Garcia A, Gacoin T, Boilot JP (2010) J Am Chem Soc 132:10967

    Article  CAS  Google Scholar 

  19. Braga D, Maini L, Mazzeo PP, Ventura B (2010) Chem Eur J 16:1553

    Article  CAS  Google Scholar 

  20. Zhang Y, Wu T, Liu R, Dou T, Bu XH, Feng PY (2010) Cryst Growth Des 10:2047

    Article  CAS  Google Scholar 

  21. Zhou WX, Yin B, Li J, Sun WJ, Zhang FX (2013) Inorg Chim Acta 408:209

    Article  CAS  Google Scholar 

  22. Armaroli N, Accorsi G, Cardinali F, Listorti A (2007) Top Curr Chem 280:69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Project Nos. 21271148, J1210057 and J1103311) that resulted in this article. CCDC 1004925–1004927 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Lin Yuan and Wang-yang Ma contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Ma, Wy., Wang, C. et al. Synthesis, structures and properties of three copper complexes created via in situ ligand cross-coupling reactions. Transition Met Chem 39, 859–866 (2014). https://doi.org/10.1007/s11243-014-9869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9869-y

Keywords

Navigation