Skip to main content
Log in

An atomic scale mechanism for the antimalarial action of chloroquine from density functional theory calculations

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The X-ray crystal structures of complexes between the antimalarial drugs quinine, quinidine and halofantrine and their biological target, iron(III) ferriprotoporphyrin IX (FePPIX), have been reported in the literature (de Villiers et al. in ACS Chem Biol 7:666, 2012; J Inorg Biochem 102:1660, 2008) and show that all three drugs utilize their zwitterionic alkoxide forms to coordinate to the iron atom via Fe–O bonds. In this work, density functional theory calculations with implicit solvent corrections have been used to model the energetics of formation of these complexes. It is found that the cost of formation of the active zwitterionic form of each drug is more than offset by the energy of its binding to FePPIX, such that the overall energies for complexation of all three drugs with FePPIX are moderately favourable in water, and rather more favourable in n-octanol as solvent. The calculations have been extended to develop an analogous model for the complex between FePPIX and chloroquine, whose structure is not presently known from experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

Notes

  1. Throughout this paper, FePPIX is used to indicate the generic form of ferriprotoporphyrin IX. Specific neutral and ionized forms of the protoporphyrin IX ligand are denoted as PPIXH2, PPIXH and PPIX2−.

References

  1. World Health Organization World malaria report 2013. http://www.who.int/malaria/publications/world_malaria_report_2013/en

  2. Robert A, Coppel Y, Meunier B (2002) Chem Commun 414–415

  3. de Villiers KA, Gildenhuys J, le Roex T (2012) ACS Chem Biol 7:666

    Article  Google Scholar 

  4. de Villiers KA, Marques HM, Egan TJ (2008) J Inorg Biochem 102:1660

    Article  Google Scholar 

  5. Hempelmann E (2007) Parasitol Res 100:671

    Article  Google Scholar 

  6. Weissbuch I, Leiserowitz L (2008) Chem Rev 108:4899

    Article  CAS  Google Scholar 

  7. Combrinck JM, Mabotha TE, Ncokazi KK, Ambele MA, Taylor D, Smith PJ, Hoppe HC, Egan TJ (2013) ACS Chem Biol 8:133

    Article  CAS  Google Scholar 

  8. Fitch CD (2004) Life Sci 74:1957

    Article  CAS  Google Scholar 

  9. Egan TJ (2008) J Inorg Biochem 102:1288

    Article  CAS  Google Scholar 

  10. Pisciotta JM, Sullivan D (2008) Parasitol Int 57:89

    Article  CAS  Google Scholar 

  11. Hayward R, Saliba KJ, Kirk K (2006) J Cell Sci 119:1016

    Article  CAS  Google Scholar 

  12. Krafts K, Hempelmann E, Skórska-Stania A (2012) Parasitol Res 111:1

    Article  Google Scholar 

  13. Walczak MS, Lawniczak-Jablonska K, Wolska A, Sienkiewicz A, Suárez L, Kosar AJ, Bohle DS (2011) J Phys Chem B 115:1145

    Article  CAS  Google Scholar 

  14. Walczak MS, Lawniczak-Jablonska K, Wolska A, Sikora M, Sienkiewicz A, Suárez L, Kosar AJ, Bellemare MJ, Bohle DS (2011) J Phys Chem B 115:4419

    Article  CAS  Google Scholar 

  15. Bohle DS, Dodd EL, Kosar AJ, Sharma L, Stephens PW, Suárez L, Tazoo D (2011) Angew Chem Int Ed 50:6151

    Article  CAS  Google Scholar 

  16. Kuter D, Benjamin SJ, Egan TJ (2014) J Inorg Biochem 133:40

    Article  CAS  Google Scholar 

  17. Gildenhuys J, le Roex T, Egan TJ, de Villiers KA (2013) J Am Chem Soc 135:1037

    Article  CAS  Google Scholar 

  18. Durrant MC (2014) Dalton Trans 43:9754

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision C.01. Gaussian, Wallingford

  20. (2011) Hyperchem release 8.0.10 for windows. Hypercube

  21. Ugliengo P, Viterbo D, Chiari G (1993) Z Kristallogr 207:9

    Article  CAS  Google Scholar 

  22. Farrugia LJ (1997) Ortep-3 for windows, version 2.02. J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  23. Wong MW (1996) Chem Phys Lett 256:391. http://cccbdb.nist.gov/vibscalejust.asp

  24. Schneider HJ, Tianjun L, Sirish M, Malinovski V (2002) Tetrahedron 58:779

    Article  CAS  Google Scholar 

  25. Kuter D, Chibale K, Egan TJ (2011) J Inorg Biochem 105:684

    Article  CAS  Google Scholar 

  26. de Villiers KA, Kaschula CH, Egan TJ, Marques HM (2007) J Biol Inorg Chem 12:101

    Article  CAS  Google Scholar 

  27. Blank O, Davioud-Charvet E, Elhabiri M (2012) Antiox Redox Signal 17:544

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Prof. Tim Egan, University of Cape Town, and to Dr. Katherine de Villiers-Chen, Stellenbosch University, for helpful discussions, and to Northumbria University for the provision of computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus C. Durrant.

Additional information

Dedicated to the memory of Dr. David R. M. Walton, Founding Editor, Transition Metal Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharige, A.M.D.S.D., Durrant, M.C. An atomic scale mechanism for the antimalarial action of chloroquine from density functional theory calculations. Transition Met Chem 39, 721–726 (2014). https://doi.org/10.1007/s11243-014-9868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9868-z

Keywords

Navigation