Skip to main content
Log in

Synthesis, crystal, molecular, and electronic structures of hydride carbonyl ruthenium(II) complexes with pseudohalide ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two pseudohalide hydride carbonyl ruthenium(II) complexes with formulae: [RuH(N3)(CO)(PPh3)3] (1) and [RuH(NCO)(CO)(PPh3)3] (2) have been synthesized by the reactions of [RuHCl(CO)(PPh3)3] with sodium azide or sodium cyanate, respectively, and are compared with the previously described thiocyanate analog [RuH(NCS)(CO)(PPh3)3]. The molecular structures of the new compounds were determined by X-ray crystallography and their spectroscopic properties have been studied. Based on the crystal structures, computational investigations have been carried out in order to determine the electronic structures of the complexes. The electronic spectra were calculated with the use of time-dependent DFT methods, and the electronic spectra of the transitions were correlated with the molecular orbitals of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kannan S, Sivagamasundari M, Ramesh R, Liu Yu (2008) J Organomet Chem 693:2251

    Article  CAS  Google Scholar 

  2. Sivagamasundari M, Ramesh R (2007) Spectrochim Acta, Part A 67:256

    Article  CAS  Google Scholar 

  3. Sivagamasundari M, Ramesh R (2007) Spectrochim Acta, Part A 66:427

    Article  CAS  Google Scholar 

  4. Kaveri MV, Prabhakaran R, Karvembu R, Natarajan K (2005) Spectrochim Acta, Part A 61:2915

    Article  CAS  Google Scholar 

  5. Raja MU, Gowri N, Ramesh R (2010) Polyhedron 29:1175

    Article  Google Scholar 

  6. Coe BJ, Glenwright SJ (2000) Coord Chem Rev 203:5

    Article  CAS  Google Scholar 

  7. Małecki JG (2010) Polyhedron 29:2489

    Article  Google Scholar 

  8. Ahmad N, Levinson JJ, Robinson SD, Uttely MF (1974) Inorg Synth 15:48

    Article  Google Scholar 

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

  10. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  11. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  12. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chim Acc 97:119

    Article  CAS  Google Scholar 

  13. Casida ME (1996) In: Seminario JM (ed) Recent developments and applications of modern density functional theory, theoretical and computational chemistry, vol 4. Elsevier, Amsterdam, p 391

  14. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO (version 3.1)

  15. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839

    Article  Google Scholar 

  16. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.36.24 (2012)

  17. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  18. Sheldrick GM (2008) Acta Cryst A 64:112

    Article  Google Scholar 

  19. Małecki JG, Maroń A (2012) Polyhedron 31:44

    Article  Google Scholar 

  20. Singh KS, Kreisel KA, Yap GPA, Kollipara MR (2006) J Organomet Chem 691:3509

    Article  CAS  Google Scholar 

  21. Nagao H, Ooyama D, Hirano T, Naoi H, Shimada M, Sasaki S, Nagao N, Mukaida M, Oi T (2001) Inorg Chim Acta 320:60

    Article  CAS  Google Scholar 

  22. Homanen P, Haukka M, Pakkanen TA, Pursiainen L, Laitinen RH (1996) Organometallics 15:4081

    Article  CAS  Google Scholar 

  23. Yadav M, Singh AK, Maiti B, Pandey DS (2009) Inorg Chem 48:7593

    Article  CAS  Google Scholar 

  24. Małecki JG (2010) Polyhedron 29:1973

    Article  Google Scholar 

  25. Małecki JG (2010) Polyhedron 29:1237

    Article  Google Scholar 

  26. Małecki JG, Maroń A (2012) Trans Met Chem 37:727

    Article  Google Scholar 

Download references

Acknowledgments

The GAUSSIAN-09 calculations were carried out in the Wrocław Centre for Networking and Supercomputing, WCSS, Wrocław, Poland, http://www.wcss.wroc.pl, under calculational Grant No. 18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maroń.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroń, A., Małecki, J.G. Synthesis, crystal, molecular, and electronic structures of hydride carbonyl ruthenium(II) complexes with pseudohalide ligands. Transition Met Chem 38, 419–428 (2013). https://doi.org/10.1007/s11243-013-9707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9707-7

Keywords

Navigation