Skip to main content
Log in

Pore-Scale Network Modeling of Three-Phase Flow Based on Thermodynamically Consistent Threshold Capillary Pressures. I. Cusp Formation and Collapse

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DI:

Displacement index

LC:

Layer collapse

LF:

Layer formation

MSP:

Mayer–Stowe–Princen

MTM:

Main terminal meniscus

NAPL:

Non-aqueous phase liquid

P3P:

Point of three-phase

PL:

Piston-like

References

  • Al-Dhahli, A., Van Dijke, M.I., Geiger, S.: Accurate modelling of pore-scale films and layers for three-phase flow processes in clastic and carbonate rocks with arbitrary wettability. Transp. Porous Media 98(2), 259–286 (2013)

    Article  Google Scholar 

  • Alizadeh, A.H., Khishvand, M., Ioannidis, M.A., Piri, M.: Multi-scale experimental study of carbonated water injection: an effective process for mobilization and recovery of trapped oil. Fuel 132, 219–235 (2014)

    Article  Google Scholar 

  • Alizadeh, A.H., Piri, M.: Three-phase flow in porous media: a review of experimental studies on relative permeability. Rev. Geophys. 52(3), 468–521 (2014)

    Article  Google Scholar 

  • Alizadeh, A.H., Piri, M.: The effect of saturation history on three-phase relative permeability: an experimental study. Water Resour. Res. 50(2), 1636–1664 (2014)

    Article  Google Scholar 

  • Baker, L.E.: Three-phase relative permeability correlations, Paper SPE 17369. In: SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1988)

  • Bartell, F.E., Osterhof, H.J.: Determination of the wettability of a solid by a liquid. Ind. Eng. Chem. 19(11), 1277–1280 (1927)

    Article  Google Scholar 

  • Blunt, M.J.: Pore level modeling of the effects of wettability. SPE J. 2(04), 494–510 (1997)

    Article  Google Scholar 

  • Blunt, M.J.: Physically-based network modeling of multiphase flow in intermediate-wet porous media. J. Petrol. Sci. Eng. 20(3), 117–125 (1998)

    Article  Google Scholar 

  • Blunt, M.J.: Flow in porous media pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H.: Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25(8), 1069–1089 (2002)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Blunt, M.J., Scher, H.: Pore-level modeling of wetting. Phys. Rev. E 52(6), 6387–6403 (1995)

    Article  Google Scholar 

  • Celia, M.A., Reeves, P.C., Ferrand, L.A.: Recent advances in pore scale models for multiphase flow in porous media. Rev. Geophys. 33(S2), 1049–1057 (1995)

    Article  Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  Google Scholar 

  • Delshad, M., Pope, G.A.: Comparison of the three-phase oil relative permeability models. Transp. Porous Media 4(1), 59–83 (1989)

    Article  Google Scholar 

  • DiCarlo, D.A., Sahni, A., Blunt, M.J.: Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks. SPE J. 5(01), 82–91 (2000)

    Article  Google Scholar 

  • Dixit, A.B., McDougall, S.R., Sorbie, K.S., Buckley, J.S.: Pore scale modelling of wettability effects and their influence on oil recovery. SPE Reserv. Eval. Eng. 2(1), 25–36 (1999)

    Article  Google Scholar 

  • Dong, M., Dullien, F.A., Chatzis, I.: Imbibition of oil in film form over water present in edges of capillaries with an angular cross section. J. Colloid Interface Sci 172(1), 21–36 (1995)

    Article  Google Scholar 

  • Dria, D.E., Pope, G.A., Sepehrnoori, K.: Three-phase gas/oil/brine relative permeabilities measured under CO2 flooding conditions. SPE Reserv. Eng. 8(02), 143–150 (1993)

    Article  Google Scholar 

  • Ehrlich, R., Davies, D.K.: Image analysis of pore geometry: relationship to reservoir engineering and modeling, Paper SPE 19054. In: SPE Gas Technology Symposium. Society of Petroleum Engineers (1989)

  • Fatt, I.: The network model of porous media I. Capillary pressure characteristics. Trans Soc. Min. Eng. AIME 207, 144–159 (1956)

    Google Scholar 

  • Fatt, I.: The network model of porous media II. Dynamic properties of a single size tube network. Trans. AIME 207, 160–163 (1956)

    Google Scholar 

  • Fatt, I.: The network model of porous media III. Dynamic properties of networks with tube radius distribution. Trans. AIME 207, 164–181 (1956)

    Google Scholar 

  • Fenwick, D.H., Blunt, M.J.: Network modeling of three-phase flow in porous media. SPE J. 3(01), 86–96 (1998)

    Article  Google Scholar 

  • Fenwick, D.H., Blunt, M.J.: Three-dimensional modeling of three phase imbibition and drainage. Adv. Water Resour. 21(2), 121–143 (1998)

    Article  Google Scholar 

  • Ferreol, B., Rothman, D.H.: Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transp. Porous Media 20(1), 3–20 (1995)

    Article  Google Scholar 

  • Firincioglu, T., Blunt, M.J., Zhou, D.: Three-phase flow and wetability effects in triangular capillaries. Colloids Surf. A 155(2), 259–276 (1999)

    Article  Google Scholar 

  • Goode, P.A., Ramakrishnan, T.S.: Momentum transfer across fluid–fluid interfaces in porous media: a network model. AIChE J. 39(7), 1124–1134 (1993)

    Article  Google Scholar 

  • Grader, A.S., O’Meara Jr, D.J.: Dynamic displacement measurements of three-phase relative permeabilities using three immiscible liquids, Paper SPE 18293. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1988)

  • Grunau, D., Chen, S., Eggert, K.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A 5(10), 2557–2562 (1993)

    Article  Google Scholar 

  • Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320–4327 (1991)

    Article  Google Scholar 

  • Hayden, N.J., Voice, T.C.: Microscopic observation of a NAPL in a three-fluid-phase soil system. J. Contam. Hydrol. 12(3), 217–226 (1993)

    Article  Google Scholar 

  • Heiba, A.A., Davis, H.T., Scriven, L.E.: Statistical Network Theory of Three-Phase Relative Permeabilities, Paper SPE 12690. In: SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1984)

  • Honarpour, M.M., Koederitz, F., Herbert, A.: Relative Permeability of Petroleum Reservoirs. CRC Press, Florida (1986)

    Google Scholar 

  • Hu, X.Y., Adams, N.A.: A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213(2), 844–861 (2006)

    Article  Google Scholar 

  • Hui, M.H., Blunt, M.J.: Effects of wettability on three-phase flow in porous media. J. Phys. Chem. B 104(16), 3833–3845 (2000)

    Article  Google Scholar 

  • Keller, A.A., Blunt, M.J., Roberts, A.P.V.: Micromodel observation of the role of oil layers in three-phase flow. Transp. Porous Media 26(3), 277–297 (1997)

    Article  Google Scholar 

  • Khishvand, M., Alizadeh, A.H., Piri, M.: In-situ characterization of wettability and pore-scale displacements during two-and three-phase flow in natural porous media. Advances in Water Resources 97, 279–298 (2016)

  • Kovscek, A.R., Wong, H., Radke, C.J.: A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE J. 39(6), 1072–1085 (1993)

    Article  Google Scholar 

  • Lago, M., Araujo, M.: Threshold pressure in capillaries with polygonal cross section. J. Colloid Interface Sci. 243(1), 219–226 (2001)

    Article  Google Scholar 

  • Lago, M., Araujo, M.: Threshold capillary pressure in capillaries with curved sides. Phys. A 319, 175–187 (2003)

    Article  Google Scholar 

  • Laroche, C., Vizika, O., Kalaydjian, F.: Network modeling to predict the effect of wettability heterogeneities on multiphase flow, Paper SPE 56674. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1999)

  • Laroche, C., Vizika, O., Kalaydjian, F.: Network modeling as a tool to predict three-phase gas injection in heterogeneous wettability porous media. J. Petrol. Sci. Eng. 24(2), 155–168 (1999)

    Article  Google Scholar 

  • Larsen, J.K., Bech, N., Winter, A.: Three-phase immiscible WAG injection: Micromodel experiments and network models, Paper SPE 59324. In: SPE/DOE Improved oil recovery symposium. Society of Petroleum Engineers.(2000)

  • Lenormand, R., Zarcone, C.: Role of roughness and edges during imbibition in square capillaries, Paper SPE 13264. In: the 59th SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1984)

  • Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337–353 (1983)

    Article  Google Scholar 

  • Lerdahl, T.R., Øren, P.E., Bakke, S.: A predictive network model for three-phase flow in porous media, Paper SPE 59311. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2000)

  • Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Co Pte Ltd, Singapore (2003)

    Book  Google Scholar 

  • Lopez, X., Valvatne, P.H., Blunt, M.J.: Predictive network modeling of single-phase non-newtonian flow in porous media. J. Colloid Interface Sci. 264(1), 256–265 (2003)

    Article  Google Scholar 

  • Maloney, D., Brinkmeyer, A.D.: Three-Phase Permeabilities and Other Characteristics of 260-mD Fired Berea. IIT Research Institute, National Institute for Petroleum and Energy Research (1992)

  • Maloney, D.R., Doggett, K., Tomutsa, L.: Three-Phase Relative Permeability Characteristics of a dolomite rock plug. Report NIPER, 329 (1997)

  • Mani, V., Mohanty, K.K.: Effect of the spreading coefficient on three-phase flow in porous media. J. Colloid Interface Sci. 187(1), 45–56 (1997)

    Article  Google Scholar 

  • Mani, V., Mohanty, K.K.: Pore-level network modeling of three-phase capillary pressure and relative permeability curves. SPE J. 3(03), 238–248 (1998)

    Article  Google Scholar 

  • Man, H.N., Jing, X.D.: Network modelling of wettability and pore geometry effects on electrical resistivity and capillary pressure. J. Petrol. Sci. Eng. 24(2), 255–267 (1999)

    Article  Google Scholar 

  • Mason, G., Morrow, N.R.: Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Colloid Interface Sci. 141(1), 262–274 (1991)

    Article  Google Scholar 

  • Mayer, R.P., Stowe, R.A.: Mercury porosimetry breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 20(8), 893–911 (1965)

    Article  Google Scholar 

  • McDougall, S.R., Sorbie, K.S.: The impact of wettability on waterflooding: pore-scale simulation. SPE Reserv. Eng. 10(03), 208–213 (1995)

    Article  Google Scholar 

  • Monaghan, J.J.: An introduction to SPH. Comput. Phys. Commun. 48(1), 89–96 (1988)

    Article  Google Scholar 

  • Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136(1), 214–226 (1997)

    Article  Google Scholar 

  • Oak, M.J.: Three-phase relative permeability of water-wet Berea, Paper SPE 20183. In: SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1990)

  • Oak, M.J., Baker, L.E., Thomas, D.C.: Three-phase relative permeability of Berea sandstone. J. Petrol. Technol. 42(08), 1–054 (1990)

    Article  Google Scholar 

  • Oliveira, L.I., Demond, A.H.: Estimation of primary drainage three-phase relative permeability for organic liquid transport in the vadose zone. J. Contam. Hydrol. 66(3), 261–285 (2003)

    Article  Google Scholar 

  • Øren, P.E., Billiotte, J., Pinczewski, W.V.: Pore-scale network modelling of waterflood residual oil recovery by immiscible gas flooding, Paper SPE 27814. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (1994)

  • Øren, P. E., Pinczewski, W. V.: The effect of wettability and spreading coefficients on the recovery of waterflood residual oil by miscible gasflooding, Paper SPE 24881. In: the 67th SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1992)

  • Øren, P.E., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(04), 324–336 (1998)

    Article  Google Scholar 

  • Øren, P.E., Pinczewski, W.V.: Fluid distribution and pore-scale displacement mechanisms in drainage dominated three-phase flow. Transp. Porous Media 20(1–2), 105–133 (1995)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229(19), 7456–7476 (2010)

    Article  Google Scholar 

  • Ovaysi, S., Piri, M.: Pore-scale modeling of dispersion in disordered porous media. J. Contam. Hydrol. 124(1), 68–81 (2011)

    Article  Google Scholar 

  • Paterson, L., Lee, J.Y., Pinczewski, W.V.: Three-phase relative permeability in heterogeneous formations, Paper SPE 38882. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers (1997)

  • Patzek, T.W.: Verification of a complete pore network simulator of drainage and imbibition. SPE J. 6(2), 144–156 (2001)

    Article  Google Scholar 

  • Pereira, G.G., Pinczewski, W.V., Chan, D.Y.C., Paterson, L., Øren, P.E.: Pore-scale network model for drainage-dominated three-phase flow in porous media. Transp. Porous media 24(2), 167–201 (1996)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis. Phys. Rev. E 70(6), 061603 (2004)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. I. Model description. Phys. Rev. E 71(2), 026301 (2005)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. II. Results. Phys. Rev. E 71(2), 026302 (2005)

    Article  Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30(1), 69–75 (1969)

    Article  Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30(3), 359–371 (1969)

    Article  Google Scholar 

  • Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 34(2), 171–184 (1970)

    Article  Google Scholar 

  • Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Dover Inc., New York (1982)

    Google Scholar 

  • Sahni, A., Burger, J., Blunt, M.J.: Measurement of three phase relative permeability during gravity drainage using CT scanning, Paper SPE 39655. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (1998)

  • Saraf, D.N., Batycky, J.P., Jackson, C.H., Fisher, D.B.: An experimental investigation of three-phase flow of water–oil–gas mixtures through water-wet sandstones, Paper SPE 10761. In: SPE California Regional Meeting. Society of Petroleum Engineers (1982)

  • Soll, W.E., Celia, M.A.: A modified percolation approach to simulating three-fluid capillary pressure-saturation relationships. Adv. Water Resour. 16(2), 107–126 (1993)

    Article  Google Scholar 

  • Stone, H.L.: Probability model for estimating three-phase relative permeability. J. Petrol. Technol. 22(02), 214–218 (1970)

    Article  Google Scholar 

  • Stone, H.L.: Estimation of three-phase relative permeability and residual oil data. J. Can. Pet. Technol. 12(4), 53–61 (1973)

    Article  Google Scholar 

  • Suicmez, V.S., Piri, M., Blunt, M.J.: Pore-scale modeling of three-phase WAG injection: prediction of relative permeabilities and trapping for different displacement cycles, Paper SPE 95594. In: SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers (2006)

  • Suicmez, V.S., Piri, M., Blunt, M.J.: Pore-scale simulation of water alternate gas injection. Transp. Porous Media 66(3), 259–286 (2007)

    Article  Google Scholar 

  • Suicmez, V.S., Piri, M., Blunt, M.J.: Effects of wettability and pore-level displacement on hydrocarbon trapping. Adv. Water Resour. 31(3), 503–512 (2008)

    Article  Google Scholar 

  • Svirsky, D. S., Van Dijke, M. I., Sorbie, K. S.: Prediction of three-phase relative permeabilities using a pore-scale network model anchored to two-phase data, Paper SPE 89992. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2007)

  • Tartakovsky, A.M., Meakin, P.: A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh Taylor instability. J. Comput. Phys. 207(2), 610–624 (2005)

    Article  Google Scholar 

  • Tartakovsky, A.M., Meakin, P.: Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv. Water Resour. 29(10), 1464–1478 (2006)

    Article  Google Scholar 

  • Tsakiroglou, C.D., Payatakes, A.C.: Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation. Adv. Water Resour. 23(7), 773–789 (2000)

    Article  Google Scholar 

  • Valvatne, P.H., Piri, M., Lopez, X., Blunt, M.J.: Predictive pore-scale modeling of single and multiphase flow. Transp. Porous Media 58, 23–41 (2005)

    Article  Google Scholar 

  • Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40(7), W07406 (2004)

    Article  Google Scholar 

  • Van Dijke, M. I. J., Piri, M., Helland, J. O., Sorbie, K. S., Blunt, M. J., Skjæveland, S. M.: Criteria for three-fluid configurations including layers in a pore with nonuniform wettability. Water Resour. Res. 43(12) (2007)

  • Van Dijke, M.I.J., Sorbie, K.S., McDougall, S.R.: A process-based approach for three-phase capillary pressure and relative permeability relationships in mixed-wet systems, Paper SPE 59310. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers. (2000)

  • Van Dijke, M.I.J., Sorbie, K.S., McDougall, S.R.: Saturation-dependencies of three-phase relative permeabilities in mixed-wet and fractionally wet systems. Adv. Water Resour. 24(3), 365–384 (2001)

    Article  Google Scholar 

  • Van Dijke, M.I.J., McDougall, S.R., Sorbie, K.S.: Three-phase capillary pressure and relative permeability relationships in mixed-wet systems. Transp. Porous Media 44(1), 1–32 (2001)

    Article  Google Scholar 

  • Van Dijke, M.I.J., Sorbie, K.S., Sohrabi, M., Tehrani, D., Danesh, A.: Three-phase flow in WAG processes in mixed-wet porous media: pore-scale network simulations and comparison with micromodel experiments. SPE J. 9(2), 57–66 (2004)

    Article  Google Scholar 

  • Van Dijke, M.I.J., Lago, M., Sorbie, K.S., Araujo, M.: Free energy balance for three fluid phases in a capillary of arbitrarily shaped cross-section: capillary entry pressures and layers of the intermediate-wetting phase. J. Colloid Interface Sci. 277(1), 184–201 (2004)

    Article  Google Scholar 

  • Van Dijke, M.I.J., Sorbie, K.S.: Pore-scale network model for three-phase flow in mixed-wet porous media. Phys. Rev. E 66(4), 046302 (2002)

    Article  Google Scholar 

  • Van Dijke, M.I.J., Sorbie, K.S.: Three-phase capillary entry conditions in pores of noncircular cross-section. J. Colloid Interface Sci. 260(2), 385–397 (2003)

    Article  Google Scholar 

  • Van Dijke, M.I.J., Sorbie, K.S.: Existence of fluid layers in the corners of a capillary with non-uniform wettability. J. Colloid Interface Sci. 293(2), 455–463 (2006)

    Article  Google Scholar 

  • Van Dijke, M.I.J., Sorbie, K.S.: Cusp at the three-fluid contact line in a cylindrical pore. J. Colloid Interface Sci. 297(2), 762–771 (2006)

    Article  Google Scholar 

  • Van Kats, F.M., Egberts, P.J.P., Van Kruijsdijk, C.P.J.W.: Three-phase effective contact angle in a model pore. Transp. Porous Media 43(2), 225–238 (2001)

    Article  Google Scholar 

  • Van Kats, F.M., Egberts, P.J.P.: Simulation of three-phase displacement mechanisms using a 2D lattice-Boltzmann model. Transp. Porous Media 37(1), 55–68 (1999)

    Article  Google Scholar 

  • Xu, B., Kamath, J., Yortsos, Y.C., Lee, S.H.: Use of pore network models to simulate laboratory corefloods in a heterogeneous carbonate sample. SPE J. 4(03), 179–186 (1999)

    Article  Google Scholar 

  • Zhou, D., Blunt, M.J.: Effect of spreading coefficient on the distribution of light non-aqueous phase liquid in the subsurface. J. Contam. Hydrol. 25(1), 1–19 (1997)

    Article  Google Scholar 

  • Zhu, Y., Fox, P.J., Morris, J.P.: A pore-scale numerical model for flow through porous media. Int. J. Numer. Anal. Methods Geomech. 23(9), 881–904 (1999)

    Article  Google Scholar 

  • Zolfaghari, A., Piri, M., Pore-scale network modeling of three-phase flow based on thermodynamically consistent threshold capillary pressures. II. Results. Transp. Porous Media. doi:10.1007/11242-016-0815-7 (2016)

  • Zolfaghari, A.: Pore-Scale network modeling of two- and three-phase flow based on thermodynamically consistent threshold capillary pressures. Ph.D. dissertation, University of Wyoming (2014)

Download references

Acknowledgements

We gratefully acknowledge financial support of Total, Saudi Aramco, EnCana, and the School of Energy Resources and the Enhanced Oil Recovery Institute at the University of Wyoming. We extend our gratitude to Hu Dong and Sven Roth of iRock Technologies for generating some of the pore networks for our samples. We thank Pål-Eric Øren of FEI for sharing his Berea network data. We also thank Henry Plancher and Soheil Saraji of Piri Research Group for measuring the interfacial tension and density values and for the details of the IFT experimental procedure used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsalan Zolfaghari.

Appendices

Appendix A Cusp Interfacial Contact Lengths and Phase Areas

1.1 Fluid–Fluid and Fluid–Solid Contact Length Calculations

For an interface, the length of an arch can be determined by knowing its two end points and radius. Oil/water and gas/oil interfaces are stretched between P3P contact and \(b_{ow}\), and P3P contact and \(b_{go}\), respectively (see Fig. 2). By using Eq. (3) for P3P’s coordinates, the oil/water and gas/oil contact lengths in a given cusp configuration can be formulated as:

$$\begin{aligned} L_{12}=2 \, r_{12} \times \arcsin { \Bigg \lbrace { (r_{12})^{-1} \sqrt{ \begin{aligned}&\left[ b_{contact} \, \cos \left( \alpha \right) +H \sin \left( \alpha \right) -b_{12} \, \cos \left( \alpha \right) \right] ^2 \\ +&\left[ b_{contact} \, \sin \left( \alpha \right) -H \cos \left( \alpha \right) -b_{12} \, \sin \left( \alpha \right) \right] ^2 \end{aligned} } \Bigg \rbrace } } \end{aligned}$$
(40)

where subscript 12 represents ow or go interfaces, \(b_{contact}\) is the b-value of the perpendicular line passing through P3P contact to the pore wall, and H is the cusp height. All parameters are clearly shown in Fig. 2. The multiplication by 2 in Eq. (40) is to account for two mirror-imaged interfaces between similar fluids in each corner. The gas/water contact length in a cusp is calculated by:

$$\begin{aligned} L_{gw}=2 \, r_{gw} \times \arcsin {\left( \frac{b_{contact} \, \sin \left( \alpha \right) -H \cos \left( \alpha \right) }{r_{gw}}\right) } \end{aligned}$$
(41)

where \(r_{gw}\) is the gas/water curvature. The oil/solid contact length is simply the difference between \(b_{go}\) and \(b_{ow}\) accounting for cusp configurations on both pore walls. It is expressed as:

$$\begin{aligned} L_{os}=2 \, \left( b_{go} - b_{ow}\right) \end{aligned}$$
(42)

Since pore’s perimeter is constant, by having oil/solid and water/solid (\(L_{ws}=2 \, b_{ow}\)) contact lengths, the gas/solid contact length can be calculated by:

$$\begin{aligned} \begin{aligned} L_{gs}&=P_t-L_{os}-L_{ws}\\&= P_t-2 \, b_{go} \end{aligned} \end{aligned}$$
(43)

where \(P_t\) is the perimeter of the pore.

1.2 Pore Fluid Area Calculations

In this section, we present equations for the calculation of pore cross-sectional areas occupied by water, oil, and gas. To calculate different phase areas, all the interfaces and points of contact should be mathematically defined for each corner of an angular pore. Oil area in a cusp configuration is calculated using:

(44)

One should note that each fluid–fluid interface on the pore cross section is modeled as part of a circle. \(f_{go}\) and \(f_{ow}\) in Eq. (44) are used to determine the sections to which the gas/oil and oil/water interfaces belong. They could hold \(-1\) and 1 values representing the upper and lower semicircles, respectively. \(e_{ow}\) and \(e_{go}\) are the correcting terms for oil/water and gas/oil interfaces, respectively, when they are part of both lower and upper semicircles, otherwise, they are zero. Their values are calculated geometrically for any interface in a given cusp configuration that requires integration over two semicircles. The first and second terms in Eq. (44) are integrals of the gas/oil and oil/water interfaces, respectively. It is formulated based on the premise that gas/oil interface is below oil/water interface between \(x_{P3P}\) and \(x_{bgo}\) (see Fig. 2). Otherwise, gas/oil interface intersects oil/water interface for \(x > x_{P3P}\), and hence, cusp configuration is not geometrically possible. Equation (44) is used only for geometrically feasible cusp configuration. Another criterion is to have a positive oil/solid contact length (i.e., \(x_{bow}<x_{bgo}\)). This is an important assumption for writing the third term in Eq. (44), which is the integral over the pore line between two intersections of oil/water and gas/oil interfaces (i.e., \(x_{bow}\) and \(x_{bgo}\)). For each corner with cusp configuration, there are two cusps that are mirror image of one another with respect to the middle line. And therefore, a multiplication by 2 is used in Eq. (44).

Having three fluid phases, i.e., oil, water and gas, in a pore with a constant cross-sectional area requires calculation of two of the fluid phase areas. We select oil and water areas. Although the same concept of integration over two different interfaces could be used for the calculation of water area [as was used for the case of oil area in Eq. (44)], it would be complicated to present a general equation to cover all possible interface curvatures and P3P locations. Instead, gas area is calculated in a predetermined site, called base area, covering the entire cusp configuration in a corner. The water area is then calculated as the total base area minus gas and oil areas within the selected base. Below, we provide more details.

Fig. 10
figure 10

Cross-sectional areas representing various terms given in Eq. (47) developed for calculation of gas area within the selected region. \(A_{g, \, base}\) is shown by the dotted black area. Areas shaded by the green squares and red lines represent the second term, and the summation of third and fourth terms on the right-hand side of Eq. (47), respectively

The base area is chosen to encompass the entire cusp configuration. A line with the equation of \(y=y_{base}\) is used to create a triangle by intersecting the pore wall and the middle line (see Fig. 10). The triangle creates the base site for the calculation of water area. The value of \(y_{base}\) is defined by:

$$\begin{aligned} y_{base} = {\left\{ \begin{array}{ll} \max {\left( y_{cgw}, \, y_{bgo}, \, y_{P3P}\right) } &{} \text{ if } r_{gw} > 0 \\ \max {\left( y_{cgw}+|r_{gw}|, \, y_{bgo}\right) } &{} \text{ otherwise } \end{array}\right. } \end{aligned}$$
(45)

As an example, see Fig. 10, where the base line is drawn for a cusp configuration with positive gas/water capillary pressure, and gas/water center being beneath the P3P contact and gas/oil center. The total area of the base is written as:

$$\begin{aligned} A_{t, \, base}=\frac{1}{2} \, y_{base}^2 \tan \left( \alpha \right) \end{aligned}$$
(46)

Gas area within the base region (\(A_{g, base}\)), black dotted area in Fig. 10, can be written as the total area of the base minus the areas occupied by water and oil:

(47)

where \(A_{t, \, base}\) is calculated using Eq. (46). The second term on the right-hand side excludes a triangle at the top of the base area, which is not covered by the third and fourth integrals (see the triangular area depicted by green squares in Fig. 10). The third term is the integral of gas/oil interface between \(x_{P3P}\) and \(x_{bgo}\), similar to the first term in Eq. (44). The fourth term is the pore wall’s integral. It covers the same integral bounds as of the previous term. Together, the third and fourth terms deduct the area shaded by the red lines in Fig. 10 from the base area. The sixth term removes an area of a rectangle over the gas/water interface where is mainly covered by the water phase. The last term in Eq. (47) corrects for the gas area that is removed by the rectangle in the previous term. Its value depends on the sign of gas/water curvature and the position of P3P contact with respect to the center of gas/water interface. For a positive curvature, i.e., \(\mathrm {P_{cgw}>0}\), it is given by:

$$\begin{aligned} A_{g,int} = {\left\{ \begin{array}{ll} \dfrac{r_{gw}^2}{2} \times \arcsin { \left( \dfrac{x_{P3P}}{r_{gw}}\right) }-\dfrac{x_{P3P}^2}{2 \times \tan {\left[ \arcsin { \left( \dfrac{x_{P3P}}{r_{gw}}\right) }\right] }} &{} \text{ if } y_{P3P}<y_{cgw} \\ \dfrac{r_{gw}^2}{4} \times \pi &{} \text{ if } y_{P3P} = y_{cgw} \\ \begin{aligned} \dfrac{r_{gw}^2}{2} &{} \times \left[ \arcsin { \left( \dfrac{y_{P3P}-y_{cgw}}{r_{gw}}\right) }+\dfrac{\pi }{2}\right] \\ &{}+\dfrac{\left( y_{P3P}-y_{cgw}\right) ^2}{2 \times \tan {\left[ \arcsin { \left( \dfrac{y_{P3P}-y_{cgw}}{r_{gw}}\right) }\right] }} \end{aligned} &{} \text{ if } y_{P3P}>y_{cgw} \end{array}\right. } \end{aligned}$$
(48)

By using oil area from Eq. (44), total base area from Eq. (46), and gas area within the base from Eq. (47), water area in the cusp configuration is calculated by:

$$\begin{aligned} A_w=A_{t, \, base}-A_{g, \, base}-A_o \end{aligned}$$
(49)

Gas area is then calculated by knowing oil and water areas as well as the total cross-sectional area of the pore. At this stage, all the required parameters are determined for invoking the MSP analysis of a cusp formation displacement.

Appendix B Thermodynamically Consistent Threshold Capillary Pressures for Two-phase Flow

1.1 Displacements in Capillary Tubes With Regular Angular Cross Sections

In this section, we present the final equations pertaining to various PL and LC displacements in capillary tubes with regular angular cross sections. They are derived using the MSP method. Since capillary tubes with regular cross sections have the same corner half angels and hinging contact angles in all corners, final threshold capillary pressure equations are relatively simple compared to their counterparts in irregular triangles. One may have three different displacements in regular capillary tubes:

  • PL displacement with the formation of wetting oil layers (configuration changes A \(\rightarrow \) B in Fig. 1):

    $$\begin{aligned} 3 \, r_{ow}^2 \bigg \{ \frac{\pi }{2}+\alpha -\theta _{ow}^a + \cos (\theta _{ow}^a)\frac{\cos (\theta _{ow}^a-\alpha )}{\sin (\alpha )} \bigg \} - r_{ow} L_t \cos (\theta _{ow}^a)+ A_t=0 \end{aligned}$$
    (50)
  • PL displacement without formation of any wetting oil layers (configuration changes A \(\rightarrow \) C in Fig. 1):

    $$\begin{aligned}&r_{ow} L_t \cos (\theta _{ow}^a)-A_t + 3 \, r_{ow}^2 \bigg \{\frac{\pi }{2}-\alpha -\theta _{ow,\smallfrown _1}^h \nonumber \\&+\left[ \cos (\theta _{ow,\smallfrown _1}^h)-2\cos (\theta _{ow}^a)\right] \frac{\cos (\theta _{ow,\smallfrown _1}^h+\alpha )}{\sin (\alpha )} \bigg \}=0 \end{aligned}$$
    (51)

    One should note that subscript 1 in \(\theta _{ow,\smallfrown _1}^h\) refers to interface one (counted from apex toward center). We do not specify the corner number because all the corners have similar corner half angles. Equations (50) and (51) can be used for the similar displacements in square cross-section pores by replacing the coefficient 3 with 4. Note that \(\alpha =\pi /4\) for squares.

  • PL displacement with the collapse of wetting oil layers (configuration change B \(\rightarrow \) C in Fig. 1):

    $$\begin{aligned}&\theta _{ow}^a+\theta _{ow,\smallfrown _1}^h-\pi - \cos (\theta _{ow}^a)\frac{\cos (\theta _{ow}^a-\alpha )}{\sin (\alpha )} \nonumber \\&+\big [2\cos (\theta _{ow}^a)-\cos (\theta _{ow,\smallfrown _1}^h)\big ] \frac{\cos (\theta _{ow,\smallfrown _1}^h+\alpha )}{\sin (\alpha )} =0 \end{aligned}$$
    (52)

1.2 Displacements in Capillary Tubes With Irregular Triangular Cross Sections

Here we list the threshold capillary pressure equations for various displacements in capillary tubes that are irregular triangle in cross section. They are divided into two groups: 1) PL displacement of oil by water with and without oil layer formation and 2) oil LC displacements.

1.2.1 PL Displacements With and Without Oil Layer Formation

  • PL displacement with the formation of one wetting oil layer in corner 1:

    $$\begin{aligned}&A_t - r_{ow} L_{t} \cos (\theta _{ow}^a)+ r_{ow}^2 \bigg \{\ \theta _{ow,\measuredangle _2,\smallfrown _1}^{h} \nonumber \\&\quad +\,\theta _{ow,\measuredangle _3,\smallfrown _1}^{h} -\theta _{ow}^a+\frac{\xi _1+\xi _2+\xi _3}{\sin (\alpha _1)\sin (\alpha _2)\sin (\alpha _3)} \bigg \}\ =0 \end{aligned}$$
    (53)

    where

    $$\begin{aligned} \xi _1= & {} \cos (\theta _{ow}^a)\sin (\alpha _2)\sin (\alpha _3)\cos (\theta _{ow}^a-\alpha _1) \end{aligned}$$
    (54)
    $$\begin{aligned} \xi _2= & {} \sin (\alpha _1)\sin (\alpha _3)\cos (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}+\alpha _2)\big [2\cos (\theta _{ow}^a) -\cos (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}) \big ] \end{aligned}$$
    (55)
    $$\begin{aligned} \xi _3= & {} \sin (\alpha _1)\sin (\alpha _2)\cos (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}+\alpha _3)\big [2\cos (\theta _{ow}^a) -\cos (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}) \big ] \end{aligned}$$
    (56)

    Subscript 1 does not necessarily refer to the sharp corner. It represent any corner in which the oil layer forms.

  • PL displacement with the formation of two wetting oil layers in corners 1 and 2:

    $$\begin{aligned}&A_t - r_{ow} L_{t} \cos (\theta _{ow}^a)+ r_{ow}^2 \bigg \{\ \pi +\theta _{ow,\measuredangle _3,\smallfrown _1}^{h} -2\theta _{ow}^a \nonumber \\&\quad +\frac{\xi _1+\xi _2+\xi _3}{\sin (\alpha _1)\sin (\alpha _2)\sin (\alpha _3)} \bigg \}\ =0 \end{aligned}$$
    (57)

    where

    $$\begin{aligned} \xi _1= & {} \cos (\theta _{ow}^a)\sin (\alpha _2)\sin (\alpha _3)\cos (\theta _{ow}^a-\alpha _1) \end{aligned}$$
    (58)
    $$\begin{aligned} \xi _2= & {} \cos (\theta _{ow}^a)\sin (\alpha _1)\sin (\alpha _3)\cos (\theta _{ow}^a-\alpha _2) \end{aligned}$$
    (59)
    $$\begin{aligned} \xi _3= & {} \sin (\alpha _1)\sin (\alpha _2)\cos (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}+\alpha _3)\big [2\cos (\theta _{ow}^a) -\cos (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}) \big ] \end{aligned}$$
    (60)

    Subscripts 1 and 2 do not necessarily refer to the sharp and medium corners. They represent any pair of corners in which the oil layers form.

  • PL displacement with the formation of three wetting oil layers (configuration changes A \(\rightarrow \) B in Fig. 1): see Eqs. (21)–(24) in Sect. 4.

  • PL displacement without formation of any wetting oil layers: see Eqs. (17)–(20) in Sect. 4.

1.2.2 Layer Collapse Events

  • PL displacement with the simultaneous collapse of two wetting oil layers:

    $$\begin{aligned}&-\pi +\theta _{ow}^a-\cos (\theta _{ow}^a)\sin (\theta _{ow}^a)\nonumber \\&\quad -\cos (\theta _{ow}^a)\sin (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h})+\frac{1}{2} \bigg [\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}+\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}\nonumber \\&\quad +\cos (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h})\sin (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}) +\cos (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h})\sin (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}) \bigg ] \nonumber \\&\quad -\cos (\theta _{ow}^a)\sin (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}) -\frac{\cos (\alpha _1) \big [\cos (\theta _{ow}^a)-\cos (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}) \big ]^2}{2\sin (\alpha _1)} \nonumber \\&\quad -\frac{\cos (\alpha _2) \big [\cos (\theta _{ow}^a)-\cos (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}) \big ]^2}{2\sin (\alpha _2)}=0\quad \quad \end{aligned}$$
    (61)

    Subscripts 1 and 2 do not necessarily refer to the wide and medium corners. They represent any pair of corners in which the oil layers collapse.

  • PL displacement with the simultaneous collapse of three wetting oil layers (configuration changes B \(\rightarrow \) C in Fig. 1):

    $$\begin{aligned}&-\pi +\theta _{ow}^a-\cos (\theta _{ow}^a)\sin (\theta _{ow}^a) \nonumber \\&\quad -\frac{2}{3}\cos (\theta _{ow}^a)\bigg [ \sin (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}) +\sin (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h})+\sin (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}) \bigg ] \nonumber \\&\quad +\frac{1}{3} \bigg [\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}+\theta _{ow,\measuredangle _2,\smallfrown _1}^{h} +\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}+\cos (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h})\sin (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}) \nonumber \\&\quad +\cos (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h})\sin (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h})+ \cos (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h})\sin (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h})\bigg ]\nonumber \\&\quad -\frac{\cos (\alpha _1) \big [\cos (\theta _{ow}^a)-\cos (\theta _{ow,\measuredangle _1,\smallfrown _1}^{h}) \big ]^2}{3\sin (\alpha _1)} \nonumber \\&\quad -\frac{\cos (\alpha _2) \big [\cos (\theta _{ow}^a)-\cos (\theta _{ow,\measuredangle _2,\smallfrown _1}^{h}) \big ]^2}{3\sin (\alpha _2)} \nonumber \\&\quad -\frac{\cos (\alpha _3) \big [\cos (\theta _{ow}^a)-\cos (\theta _{ow,\measuredangle _3,\smallfrown _1}^{h}) \big ]^2}{3\sin (\alpha _3)}=0\quad \quad \end{aligned}$$
    (62)
  • PL displacement with the single collapse of a wetting oil layer: see Eq. (25) in Sect. 4.

Appendix C Thermodynamically Consistent Threshold Capillary Pressures for Three-phase Flow

Threshold capillary pressure equations for various three-phase displacements in irregular triangular cross sections are presented in this section. They are presented in two main groups: 1) PL displacement of oil by gas with and without oil layer formation and 2) oil LC displacements.

1.1 PL Displacements With and Without Oil Layer Formation

  • PL displacement with the formation of one spreading oil layer in corner 1:

    $$\begin{aligned} r_{go}^3 C_1+r_{go}^2 C_2+r_{go} C_3+C_4=0 \end{aligned}$$
    (63)

    where \(C_1\)\(C_4\) are given by:

    $$\begin{aligned} C_1&=\frac{\sigma _{ow}\sigma _{go}}{r_{ow}}\bigg \{ \frac{\pi }{2}-\alpha _1-\theta _{go}^r - \cos \left( \theta _{go}^r\right) \frac{\cos (\theta _{go}^r+\alpha _1)}{\sin (\alpha _1)} \bigg \} \end{aligned}$$
    (64)
    $$\begin{aligned} C_2&=\frac{\sigma _{ow}}{r_{ow}}\left[ \begin{aligned}&\sigma _{ow}\bigg \{ \frac{\Delta A_{w,2}+\Delta A_{w,3}}{r_{ow}}+2 \, r_{ow} \left( \theta _{ow,2}+\theta _{ow,3}+\alpha _2+\alpha _3-\pi \right) \bigg \}\\&+\sigma _{go}\cos \left( \theta _{go}^r\right) \bigg \{L_t-2 \, r_{ow} \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \bigg \} \end{aligned} \right] \nonumber \\&\quad +\sigma _{go}^2 \bigg \{ \frac{\pi }{2}-\alpha _1-\theta _{go}^r - \cos \left( \theta _{go}^r\right) \frac{\cos (\theta _{go}^r+\alpha _1)}{\sin (\alpha _1)} \bigg \}\nonumber \\&\quad +\sigma _{gw}\left[ \begin{aligned}&2 \, \sigma _{gw}\Bigg \lbrace { \begin{aligned}&\pi -\left( \theta _{gw,2}+\theta _{gw,3}+\alpha _2+\alpha _3\right) -\cos \left( \theta _{gw,2}^{r,orig/alt}\right) \frac{\cos (\theta _{gw,2}^r+\alpha _2)}{\sin (\alpha _2)}\\&-\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \frac{\cos (\theta _{gw,3}^r+\alpha _3)}{\sin (\alpha _3)} \end{aligned} \Bigg \rbrace }\\&+\frac{\sigma _{ow}}{r_{ow}}\cos \left( \theta _{gw}^{r,alt}\right) \Bigg \lbrace { \begin{aligned}&2 \, r_{ow} \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \\&-L_{s,2}^{orig}-L_{s,3}^{orig} \end{aligned} \Bigg \rbrace }\\&+\frac{\sigma _{ow}}{r_{ow}}\bigg \{L_{s,2}^{orig}\cos \left( \theta _{gw,2}^{r,orig/alt}\right) +L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \bigg \} \end{aligned} \right] \end{aligned}$$
    (65)
    $$\begin{aligned} C_3&=\frac{\sigma _{ow}\sigma _{go}}{r_{ow}}\left[ \begin{aligned}&2 \left( \Delta A_{w,2}+\Delta A_{w,3}\right) -A_t\\&+r_{ow}^2 \Bigg \lbrace { \begin{aligned}&\theta _{ow,2}+\theta _{ow,3}+\alpha _2+\alpha _3-\pi +\cos \left( \theta _{ow,2}\right) \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } \\&+\cos \left( \theta _{ow,3}\right) \frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \end{aligned} \Bigg \rbrace } \end{aligned} \right] \nonumber \\&\quad +2 \, \sigma _{ow}\sigma _{go}r_{ow}\left( \theta _{ow,2}+\theta _{ow,3}+\alpha _2+\alpha _3-\pi \right) \nonumber \\&\quad +\sigma _{go}^2 \cos \left( \theta _{go}^r\right) \bigg \{L_t-2 \, r_{ow} \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \bigg \} \nonumber \\&\quad +\sigma _{gw}\sigma _{go}\bigg \{L_{s,2}^{orig}\cos \left( \theta _{gw,2}^{r,orig/alt}\right) +L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \bigg \} \nonumber \\&\quad +\sigma _{gw}\sigma _{go}\cos \left( \theta _{gw}^{r,alt}\right) \bigg \{ 2 \, r_{ow} \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) -L_{s,2}^{orig}-L_{s,3}^{orig} \bigg \} \end{aligned}$$
    (66)
    $$\begin{aligned} C_4&=\sigma _{go}^2 \left[ \begin{aligned}&r_{ow}^2 \Bigg \lbrace { \begin{aligned}&\theta _{ow,2}+\theta _{ow,3}+\alpha _2+\alpha _3-\pi \\&\cos \left( \theta _{ow,2}\right) \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\cos \left( \theta _{ow,3}\right) \frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \end{aligned} \Bigg \rbrace } \\&+\Delta A_{w,2}+\Delta A_{w,3}-A_t \end{aligned} \right] \end{aligned}$$
    (67)
  • PL displacement with the formation of two spreading oil layers in corners 1 and 2:

    $$\begin{aligned} r_{go}^3 C_1+r_{go}^2 C_2+r_{go} C_3+C_4=0 \end{aligned}$$
    (68)

    where \(C_1\)\(C_4\) are calculated from:

    $$\begin{aligned} C_1=&\frac{\sigma _{ow}\sigma _{go}}{r_{ow}}\bigg \{ \pi -\alpha _1-\alpha _2-2 \, \theta _{go}^r - \cos \left( \theta _{go}^r\right) \left( \frac{\cos (\theta _{go}^r+\alpha _1)}{\sin (\alpha _1)}+\frac{\cos (\theta _{go}^r+\alpha _2)}{\sin (\alpha _2)}\right) \bigg \} \end{aligned}$$
    (69)
    $$\begin{aligned} C_2=&\frac{\sigma _{ow}}{r_{ow}}\left[ \begin{aligned}&\sigma _{ow}\bigg \{ \frac{\Delta A_{w,3}}{r_{ow}}+2 \, r_{ow} \left( \theta _{ow,3}+\alpha _3-\frac{\pi }{2} \right) \bigg \}\\&+\sigma _{go}\cos \left( \theta _{go}^r\right) \bigg \{L_t-2 \, r_{ow} \frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\bigg \}\\&+\sigma _{gw} \bigg \{L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) +\cos \left( \theta _{gw}^{r,alt}\right) \left( 2 \, r_{ow} \frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }-L_{s,3}^{orig}\right) \bigg \} \end{aligned} \right] \nonumber \\&+\sigma _{go}^2 \bigg \{ \pi -\alpha _1-\alpha _2-2 \, \theta _{go}^r - \cos \left( \theta _{go}^r\right) \left( \frac{\cos (\theta _{go}^r+\alpha _1)}{\sin (\alpha _1)}+\frac{\cos (\theta _{go}^r+\alpha _2)}{\sin (\alpha _2)}\right) \bigg \}\nonumber \\&+2 \, \sigma _{gw}^2 \bigg \{ \frac{\pi }{2}-\theta _{gw,3}-\alpha _3 -\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \frac{\cos (\theta _{gw,3}^r+\alpha _3)}{\sin (\alpha _3)} \bigg \} \end{aligned}$$
    (70)
    $$\begin{aligned} C_3=&\frac{\sigma _{ow}\sigma _{go}}{r_{ow}}\left[ 2 \, \Delta A_{w,2}-A_t+r_{ow}^2 \bigg \{\theta _{ow,3}+\alpha _3-\frac{\pi }{2} +\cos \left( \theta _{ow,3}\right) \frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\bigg \} \right] \nonumber \\&+2 \, \sigma _{ow}\sigma _{go}r_{ow}\left( \theta _{ow,3}+\alpha _3-\frac{\pi }{2}\right) +\sigma _{go}^2 \cos \left( \theta _{go}^r\right) \bigg \{L_t-\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\bigg \} \nonumber \\&+\sigma _{gw}\sigma _{go}\Bigg \{L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) +\cos \left( \theta _{gw}^{r,alt}\right) \left( 2 \, r_{ow}\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }-L_{s,3}^{orig}\right) \Bigg \} \nonumber \\ \end{aligned}$$
    (71)
    $$\begin{aligned} C_4=&\sigma _{go}^2 \left[ r_{ow}^2 \bigg \{\theta _{ow,3}+\alpha _3-\frac{\pi }{2} +\cos \left( \theta _{ow,3}\right) \frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \bigg \} +\Delta A_{w,3}-A_t\right] \end{aligned}$$
    (72)
  • PL displacement with the formation of three spreading oil layers: see Eq. (30) in Sect. 4.

  • PL displacement without formation of any spreading oil layers: see Eqs. (26)–(29) in Sect. 4.

1.2 Three-Phase Layer Collapse Events

  • PL displacement with the single collapse of a spreading oil layer in corner 3: see Eqs. (31)–(35) in Sect. 4.

  • PL displacement with the simultaneous collapse of two spreading oil layers in corners 2 and 3:

    $$\begin{aligned} r_{gw}^3 \frac{\sigma _{ow}^2 C_1}{r_{ow}^2}+r_{gw}^2 \frac{2 \, \sigma _{ow}\sigma _{gw} C_2}{r_{ow}} +r_{gw} C_3+\sigma _{gw} C_4=0 \end{aligned}$$
    (73)

    where \(C_1\)\(C_4\) are expressed by:

    $$\begin{aligned} C_1&=\theta _{gw,2}+\theta _{gw,3}+\alpha _2+\alpha _3-\pi +\cos \left( \theta _{gw,2}\right) \frac{\cos (\theta _{gw,2}+\alpha _2)}{\sin (\alpha _2)} \nonumber \\&\quad +\,\cos \left( \theta _{gw,3}\right) \frac{\cos (\theta _{gw,3}+\alpha _3)}{\sin (\alpha _3)} \end{aligned}$$
    (74)
    $$\begin{aligned} C_2&=\frac{\cos \left( \theta _{gw,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } \left( \cos \left( \theta _{gw,2}^{r,orig/alt}\right) -\cos \left( \theta _{gw,2}\right) \right) \nonumber \\&\quad +\,\frac{\cos \left( \theta _{gw,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \left( \cos \left( \theta _{gw,3}^{r,orig/alt}\right) -\cos \left( \theta _{gw,3}\right) \right) \end{aligned}$$
    (75)
    $$\begin{aligned} C_3&= \sigma _{ow}^2 \bigg \{2 \left( \pi -\theta _{ow,2}-\theta _{ow,3}-\alpha _2-\alpha _3\right) -\frac{\Delta A_{w,2}+\Delta A_{w,3}}{r_{ow}^2} \bigg \}\nonumber \\&\quad +\,2 \,\sigma _{ow}\sigma _{go} \cos \left( \theta _{go}^r\right) \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \nonumber \\&\quad -\frac{\sigma _{ow}\sigma _{gw}}{r_{ow}} \left[ \begin{aligned}&L_{s,2}^{orig}\cos \left( \theta _{gw,2}^{r,orig/alt}\right) +L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \\&\quad +\,\cos \left( \theta _{gw}^{r,alt}\right) \Bigg \lbrace { \begin{aligned}&2 \, r_{ow} \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \\&-L_{s,2}^{orig}-L_{s,3}^{orig} \end{aligned} \Bigg \rbrace } \end{aligned} \right] \nonumber \\&\quad +\,\sigma _{go}^2 \left\{ 2 \, \theta _{go}^r+\alpha _2+\alpha _3-\pi +\cos \left( \theta _{go}^r\right) \left( \frac{\cos \left( \theta _{go}^r+\alpha _2\right) }{\sin \left( \alpha _2\right) }+\frac{\cos \left( \theta _{go}^r+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \right\} \nonumber \\&\quad +\,\sigma _{gw}^2 \Bigg \lbrace { \begin{aligned}&\pi -\theta _{gw,2}-\alpha _2-\frac{\cos \left( \theta _{gw,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) }\left( 2 \, \cos \left( \theta _{gw,2}^{r,orig/alt}\right) -\cos \left( \theta _{gw,2}\right) \right) \\&-\theta _{gw,3}-\alpha _3-\frac{\cos \left( \theta _{gw,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\left( 2 \, \cos \left( \theta _{gw,3}^{r,orig/alt}\right) -\cos \left( \theta _{gw,3}\right) \right) \end{aligned} \Bigg \rbrace } \end{aligned}$$
    (76)
    $$\begin{aligned} C_4&=\sigma _{ow} \bigg \{\frac{\Delta A_{w,2}+\Delta A_{w,3}}{r_{ow}}+2 \, r_{ow}\left( \theta _{ow,2}+\theta _{ow,3}+\alpha _2+\alpha _3-\pi \right) \bigg \} \nonumber \\&\quad -\,2 \, \sigma _{go} r_{ow} \cos \left( \theta _{go}^r\right) \left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \nonumber \\&+\sigma _{gw}\left[ \begin{aligned}&L_{s,2}^{orig}\cos \left( \theta _{gw,2}^{r,orig/alt}\right) +L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \\&\quad +\,\cos \left( \theta _{gw}^{r,alt}\right) \Bigg \lbrace { \begin{aligned}&2 \, r_{ow}\left( \frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \\&-L_{s,2}^{orig}-L_{s,3}^{orig} \end{aligned} \Bigg \rbrace } \end{aligned} \right] \end{aligned}$$
    (77)
  • PL displacement with the simultaneous collapse of three spreading oil layers (configuration changes D \(\rightarrow \) F in Fig. 1):

    $$\begin{aligned} r_{gw}^3 \frac{\sigma _{ow}^2 C_1}{r_{ow}^2}+r_{gw}^2 \frac{2 \, \sigma _{ow}\sigma _{gw} C_2}{r_{ow}} +r_{gw} C_3+\sigma _{gw} C_4=0 \end{aligned}$$
    (78)

    where \(C_1\)\(C_4\) are given by:

    $$\begin{aligned} C_1&=\theta _{gw,1}+\theta _{gw,2}+\theta _{gw,3}-\pi +\cos \left( \theta _{gw,1}\right) \frac{\cos (\theta _{gw,1}+\alpha _1)}{\sin (\alpha _1)} \nonumber \\&\quad +\,\cos \left( \theta _{gw,2}\right) \frac{\cos (\theta _{gw,2}+\alpha _2)}{\sin (\alpha _2)}+\cos \left( \theta _{gw,3}\right) \frac{\cos (\theta _{gw,3}+\alpha _3)}{\sin (\alpha _3)} \end{aligned}$$
    (79)
    $$\begin{aligned} C_2&=\frac{\cos \left( \theta _{gw,1}+\alpha _1\right) }{\sin \left( \alpha _1\right) } \left( \cos \left( \theta _{gw,1}^{r,orig/alt}\right) -\cos \left( \theta _{gw,1}\right) \right) \nonumber \\&\quad +\,\frac{\cos \left( \theta _{gw,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } \left( \cos \left( \theta _{gw,2}^{r,orig/alt}\right) -\cos \left( \theta _{gw,2}\right) \right) \nonumber \\&\quad +\,\frac{\cos \left( \theta _{gw,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \left( \cos \left( \theta _{gw,3}^{r,orig/alt}\right) -\cos \left( \theta _{gw,3}\right) \right) \end{aligned}$$
    (80)
    $$\begin{aligned} C_3&= \sigma _{ow}^2 \bigg \{2 \left( \pi -\theta _{ow,1}-\theta _{ow,2}-\theta _{ow,3}\right) -\frac{\Delta A_{w,1}+\Delta A_{w,2}+\Delta A_{w,3}}{r_{ow}^2} \bigg \}\nonumber \\&\quad +\,2 \,\sigma _{ow}\sigma _{go} \cos \left( \theta _{go}^r\right) \left( \frac{\cos \left( \theta _{ow,1}+\alpha _1\right) }{\sin \left( \alpha _1\right) } +\frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } +\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \nonumber \\&-\quad \frac{\sigma _{ow}\sigma _{gw}}{r_{ow}} \left[ \begin{aligned}&L_{s,1}^{orig}\cos \left( \theta _{gw,1}^{r,orig/alt}\right) +L_{s,2}^{orig}\cos \left( \theta _{gw,2}^{r,orig/alt}\right) +L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \\&+\cos \left( \theta _{gw}^{r,alt}\right) \Bigg \lbrace { \begin{aligned}&2 \, r_{ow} \left( \begin{aligned}&\frac{\cos \left( \theta _{ow,1}+\alpha _1\right) }{\sin \left( \alpha _1\right) } +\frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) }\\&+\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \end{aligned} \right) \\&-L_{s,1}^{orig}-L_{s,2}^{orig}-L_{s,3}^{orig} \end{aligned} \Bigg \rbrace } \end{aligned} \right] \nonumber \\&\quad +\,\sigma _{go}^2 \Bigg \{ 3 \, \theta _{go}^r-\pi +\cos \left( \theta _{go}^r\right) \left( \frac{\cos \left( \theta _{go}^r+\alpha _1\right) }{\sin \left( \alpha _1\right) }+ \frac{\cos \left( \theta _{go}^r+\alpha _2\right) }{\sin \left( \alpha _2\right) }+\frac{\cos \left( \theta _{go}^r+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \Bigg \} \nonumber \\&\quad +\,\sigma _{gw}^2 \Bigg \lbrace { \begin{aligned}&\pi -\theta _{gw,1}-\frac{\cos \left( \theta _{gw,1}+\alpha _1\right) }{\sin \left( \alpha _1\right) }\left( 2 \, \cos \left( \theta _{gw,1}^{r,orig/alt}\right) -\cos \left( \theta _{gw,1}\right) \right) \\&-\theta _{gw,2}-\frac{\cos \left( \theta _{gw,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) }\left( 2 \, \cos \left( \theta _{gw,2}^{r,orig/alt}\right) -\cos \left( \theta _{gw,2}\right) \right) \\&-\theta _{gw,3}-\frac{\cos \left( \theta _{gw,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\left( 2 \, \cos \left( \theta _{gw,3}^{r,orig/alt}\right) -\cos \left( \theta _{gw,3}\right) \right) \end{aligned} \Bigg \rbrace } \end{aligned}$$
    (81)
    $$\begin{aligned} C_4&=\sigma _{ow} \bigg \{\frac{\Delta A_{w,1}+\Delta A_{w,2}+\Delta A_{w,3}}{r_{ow}}+2 \, r_{ow}\left( \theta _{ow,1}+\theta _{ow,2}+\theta _{ow,3}-\pi \right) \bigg \} \nonumber \\&\quad -\,2 \, \sigma _{go} r_{ow} \cos \left( \theta _{go}^r\right) \left( \frac{\cos \left( \theta _{ow,1}+\alpha _1\right) }{\sin \left( \alpha _1\right) } +\frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) }+\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) }\right) \nonumber \\&\quad +\,\sigma _{gw}\left[ \begin{aligned}&L_{s,1}^{orig}\cos \left( \theta _{gw,1}^{r,orig/alt}\right) +L_{s,2}^{orig}\cos \left( \theta _{gw,2}^{r,orig/alt}\right) +L_{s,3}^{orig}\cos \left( \theta _{gw,3}^{r,orig/alt}\right) \\&+\cos \left( \theta _{gw}^{r,alt}\right) \Bigg \lbrace { \begin{aligned}&2 \, r_{ow}\left( \begin{aligned}&\frac{\cos \left( \theta _{ow,1}+\alpha _1\right) }{\sin \left( \alpha _1\right) }+\frac{\cos \left( \theta _{ow,2}+\alpha _2\right) }{\sin \left( \alpha _2\right) } \\&+\frac{\cos \left( \theta _{ow,3}+\alpha _3\right) }{\sin \left( \alpha _3\right) } \end{aligned} \right) \\&-L_{s,1}^{orig}-L_{s,2}^{orig}-L_{s,3}^{orig} \end{aligned} \Bigg \rbrace } \end{aligned} \right] \end{aligned}$$
    (82)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, A., Piri, M. Pore-Scale Network Modeling of Three-Phase Flow Based on Thermodynamically Consistent Threshold Capillary Pressures. I. Cusp Formation and Collapse. Transp Porous Med 116, 1093–1137 (2017). https://doi.org/10.1007/s11242-016-0814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0814-8

Keywords

Navigation