Skip to main content
Log in

Modeling the Capacitive Deionization Process in Dual-Porosity Electrodes

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In many areas of the world, there is a need to increase water availability. Capacitive deionization (CDI) is an electrochemical water treatment process that can be a viable alternative for treating water and for saving energy. A model is presented to simulate the CDI process in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two steps volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. A one-equation model based on the principle of local equilibrium is derived. The constraints determining the range of application of the one-equation model are presented. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. The source terms that appear in the average equations are calculated using theoretical derivations. The global diffusivity is calculated by solving the closure problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\({A}_{ ij}\) :

Interphase area for ij phases \((\hbox {m}^{2})\)

\({a}_\mathrm{v}\) :

Microscale effective area \((\hbox {m}^{2}\,\hbox {m}^{-3})\)

\({a}_\mathrm{vM}\) :

Macroscale effective area \((\hbox {m}^{2}\,\hbox {m}^{-3})\)

\({c}_\mathrm{i}\) :

Ion concentration \((\hbox {mol\,m}^{-3})\)

\({C}_{\infty }\) :

Salt bulk concentration \((\hbox {mol\,m}^{-3})\)

\(\tilde{{c}}_{i}\) :

Deviation salt concentration in i-phase \((\hbox {mol\,m}^{-3})\)

\(\hat{{c}}_{i}\) :

Large-scale deviation salt concentration for i-phase \((\hbox {mol\,m}^{-3})\)

\(\langle {c}_i \rangle ^{{i}}\) :

Intrinsic phase average concentration in i-phase \((\hbox {mol\,m}^{-3})\)

\(\langle {c}\rangle ^{{*}}\) :

One-equation model phase average concentration \((\hbox {mol\,m}^{-3})\)

\(\mathop {\underline{\underline{{{D}}}}}^{*}\) :

Large-scale effective diffusivity tensor \((\hbox {m}^{2}\,\hbox {s}^{-1})\)

\( \underline{\underline{{{D}}}}_{{{\mathrm{eff}}}}\) :

Microscale effective diffusivity tensor \((\hbox {m}^{2}\,\hbox {s}^{-1})\)

\( \underline{\underline{{{D}}}}_{{{{ ij}}}}\) :

Effective diffusivity tensors appearing in “Appendix 1” \((\hbox {m}^{2}\,\hbox {s}^{-1})\)

\({D}_{i}\) :

Diffusion coefficient \((\hbox {m}^{2}\,\hbox {s}^{-1})\)

\(\underline{{f}}_{1}\) :

Closure vector field (m)

\({f}_{2}\) :

Closure scalar field \((\hbox {s\,m}^{-1})\)

F :

Faraday constant \((\hbox {C\,mol}^{-1})\)

\({F}_{1}\) :

Source parameter defined in Eq. (5)

\({F}_{2}\) :

Source parameter defined in Eq. (5)

\(\langle {F}_1 \rangle \) :

Source parameter defined in Eq. (36)

\(\langle {F}_2 \rangle \) :

Source parameter defined in Eq. (36)

\(\underline{{g}}_{1}\) :

Closure vector field (m)

\({g}_{i}\) :

Closure scalar field in i-phase \((\hbox {V\,m}^{2}\,\hbox {s\,mol}^{-1})\)

\({G}_{1}\) :

Source parameter defined in Eq. (12)

\({G}_{2}\) :

Source parameter defined in Eq. (12)

\(\langle {G}_1 \rangle \) :

Source parameter defined in Eq. (61)

\(\langle {G}_2 \rangle \) :

Source parameter defined in Eq. (61)

\({h}_{i}\) :

Closure scalar field in i-phase \((\hbox {V\,m}^{2}\,\hbox {s\,mol}^{-1})\)

\( \underline{\underline{{{I}}}}\) :

Unit tensor (dim.)

k :

Mass transfer coefficient \((\hbox {m s}^{-1})\)

\({k}_{i}\) :

Heat conductivity in i-phase (W m\(^{-1}\) K\(^{-1}\))

\( \underline{\underline{{{K}}}}^{*}\) :

Thermal conductivity tensor \((\hbox {J\,m}^{-2}\,\hbox {s}^{-1})\)

\({l}_{i}\) :

Characteristic length of the microscale level in i-phase (m)

\({l}_{\kappa }\) :

Mixed length scale combining interfacial and mass transport (m)

\({l}_{\gamma \kappa }\) :

Mixed geometrical length scale combining \(\gamma \) and \(\kappa \)-phases (m)

L :

Electrode length scale (m)

\({L}_{c}\) :

Macroscopic length scale for the gradient (m)

\(\underline{{n}}_{\alpha \beta }\) :

Unit normal vector from the \(\alpha \) into the \(\beta \)-phase (dim.)

\(\underline{{n}}_{\gamma \kappa }\) :

Unit normal vector from the \(\gamma \) into the \(\kappa \)-phase (dim.)

\({N}_{i}\) :

Ion flux \((\hbox {mol\,m}^{-2}\,\hbox {s}^{-1})\)

q :

Excess charge density \((\hbox {C\,m}^{-2})\)

\(\langle {q}\rangle _{ ij}\) :

Excess charge area averaged for ij phases \((\hbox {C\,m}^{-2})\)

r :

Radial cylindrical coordinate (m)

\({r}_{1}\) :

Unit cell dimension (m)

\({r}_{2}\) :

Unit cell dimension (m)

\({R}_\mathrm{m}\) :

Radius of the microscale representative elementary volume (m)

\({R}_\mathrm{M}\) :

Radius of the macroscale representative elementary volume (m)

t :

Time (s)

\({t}^{{*}}\) :

Characteristic time for the process (s)

\({t}_{\mathrm{IMT}}\) :

Characteristic time for interphase mass transport (s)

\({\underline{\underline{{{U}}}}}^{*}\) :

Large-scale effective mobility tensor \((\hbox {m}^{2}\,\hbox {V}^{-1}\,\hbox {s}^{-1})\)

\( \underline{\underline{{{U}}}}_{{{i}}}\) :

Mobility tensor in i-phase \((\hbox {m}^{2}\,\hbox {V}^{-1}\,\hbox {s}^{-1})\)

\( \underline{\underline{{{U}}}}_{{{\mathrm{eff}}}}\) :

Microscale effective mobility tensor \((\hbox {m}^{2}\,\hbox {V}^{-1}\,\hbox {s}^{-1})\)

\( \underline{\underline{{{U}}}}_{{{{ ij}}}}\) :

Effective mobility tensor appearing in “Appendix 2” \((\hbox {m}^{2}\,\hbox {V}^{-1}\,\hbox {s}^{-1})\)

\({V}_{i}\) :

i-Phase in REV \((\hbox {m}^{3})\)

\({V}_{T}\) :

Thermal voltage (V)

w :

Excess salt density \((\hbox {mol\,m}^{-2})\)

\(\langle {w}\rangle _{ ij}\) :

Excess salt adsorption area average for ij phases \((\hbox {mol\,m}^{-2})\)

x :

Spatial position (m)

\({z}_{i}\) :

Ionic charge number (dim.)

\(\delta \) :

Mass diffusivity ratio, \((D_{\kappa , \mathrm{eff}}/D_{\gamma },\mathrm{dim.})\)

\(\varepsilon _{i}\) :

i-Phase volume fraction (dim.)

\(\varepsilon ^{*}\) :

Factor defined in “Appendix 1” (dim.)

\(\phi \) :

Electrostatic potential (V)

\( \tilde{\phi }_{i}\) :

Potential deviation in i-phase (V)

\(\hat{{\phi }}_{i}\) :

Large-scale potential deviation for the i-phase (V)

\(\langle \phi _i \rangle ^{{i}}\) :

Intrinsic phase average potential in i-phase (V)

\(\langle \phi \rangle ^{{*}}\) :

One-equation phase average potential (V)

\(\Delta \phi _{D}\) :

Diffuse layer potential difference (V)

\(\Delta \phi _\mathrm{Don}\) :

Donnan potential difference (V)

\(\Delta \phi _\mathrm{Stern}\) :

Stern layer potential difference (V)

K :

Heat conductivity ratio, \(({K} = {k}_{\kappa }/{k}_{\gamma },\mathrm{dim.})\)

\(\lambda _{D}\) :

Debye length (m)

\(\theta \) :

Azimuthal cylindrical coordinate (m)

\(\psi _{i}\) :

Generic variable in i-phase

\(\psi \) :

Closure variable in Eq. (38) \((\hbox {mol\,m}^{-3})\)

\(\underline{\nabla }\) :

Nabla operator \((\hbox {m}^{-1})\)

\(\zeta \) :

Closure variable in Eq. (37) \((\hbox {mol\,m}^{-3})\)

i :

i-Phase

\(\alpha \) :

\(\alpha \)-Phase

\(\beta \) :

\(\beta \)-Phase

\(\gamma \) :

\(\gamma \)-Phase

\(\kappa \) :

\(\kappa \)-Phase

\(\alpha \beta \) :

\(\alpha \)\(\beta \) Interphase

\(\gamma \kappa \) :

\(\gamma \)\(\kappa \) Interphase

\(\alpha \) :

\(\alpha \)-Phase

\(\beta \) :

\(\beta \)-Phase

\(\gamma \) :

\(\gamma \)-Phase

\(\kappa \) :

\(\kappa \)-Phase

\(*\) :

Spatial average variable

References

  • Anderson, M.A., Cudero, A.L., Jesus Palma, J.: Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta 55, 3845–3856 (2010)

  • Biesheuvel, P.M., Bazant, M.Z.: Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 81, 031502 (2010)

    Article  Google Scholar 

  • Biesheuvel, P.M., Yu, F., Bazant, M.Z.: Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E 83, 061507 (2011)

    Article  Google Scholar 

  • Biesheuvel, P.M., Fu, Y., Bazant, M.Z.: Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes. Russ. J. Electrochem. 48, 580 (2012)

    Article  Google Scholar 

  • Biesheuvel, P.M., S. Porada, S., Levi, M., Bazant, M.Z.: Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electrochem. 18, 1365 (2014)

    Article  Google Scholar 

  • Bockris, J.O., Devanthan, M.A.V., Mueller, K.: On the structure of charged interfaces. Proc. R. Soc. Ser. A 274, 55 (1963)

    Article  Google Scholar 

  • Bockris, J.O., Reddy, A.K.N., Gamboa-Aldeco, M.: Modern Electrochemistry: Fundamentals of Electrodics, vol. 2b. Plenum, New York (2000)

    Google Scholar 

  • Borges da Silva, E.A., Souza, D.P., Ulson de Souza, A.A., Guelli U. de Souza, S.M.A.: Prediction of effective diffusivity tensors for bulk diffusion with chemical reactions. Braz. J. Chem. Eng. 24, 47–60 (2007)

    Google Scholar 

  • Brenner, H.: Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 297, 81–133 (1980)

  • Chang, H.-C.: Multiscale analysis of effective transport in periodic heterogeneous media. Chem. Eng. Commun. 15, 83–91 (1982)

    Article  Google Scholar 

  • Chang, H.-C.: Effective diffusion and conduction in two-phase media: a unified approach. A.1.Ch.E. J. 29, 846–853 (1983)

    Article  Google Scholar 

  • Chu, K.T., Bazant, M.Z.: Nonlinear electrochemical relaxation around conductors. Phys. Rev. E 74, 011501 (2006)

    Article  Google Scholar 

  • Chu, K.T., Bazant, M.Z.: Surface conservation laws at microscopically diffuse interfaces. J. Colloid Interface Sci. 315, 319–329 (2007)

    Article  Google Scholar 

  • del Rìo, J.A., Whitaker, S.: Maxwell’s equations in two-phase systems I: local electrodynamic equilibrium. Transp. Porous Media 39, 159–186 (2000a)

    Article  Google Scholar 

  • del Rìo, J.A., Whitaker, S.: Maxwell’s equations in two-phase systems II: two-equation model. Transp. Porous Media 39, 259–287 (2000b)

    Article  Google Scholar 

  • del Rìo, J.A., Whitaker, S.: Electrohydrodynamics in porous media. Transp. Porous Media 44, 385–405 (2001)

    Article  Google Scholar 

  • Feng, G., Qiao, R., Huang, J.S., Dai, Sh, Sumpter, B.G., Meunier, V.: The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Phys. Chem. Chem. Phys. 13, 1152–1161 (2010)

    Article  Google Scholar 

  • Fu, R.-W., Li, Z.-H., Liang, Y.-R., Li, F., Xu, F., Wu, D.-C.: Hierarchical porous carbons: design, preparation, and performance in energy storage. New Carbon Mater. 26, 171–179 (2011)

    Article  Google Scholar 

  • Gabitto, J.F., Tsouris, C.: Volume averaging study of the capacity deionization process in homogeneous porous media. Transp. Porous Media 109(1), 61–80 (2015)

    Article  Google Scholar 

  • Gray, W.G., Lee, P.C.Y.: On the theorems for local volume averaging of multiphase systems. Int. J. Multiphase Flow 3, 333–340 (1977)

    Article  Google Scholar 

  • Hashim, Z., Shtrikman, S.: A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3133 (1962)

    Article  Google Scholar 

  • Hou, C.-H.: Electrical Double Layer Formation in Nanoporous Carbon Materials. Ph.D. Dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology (2008)

  • Howes, F.A., Whitaker, S.: The spatial averaging theorem revisited. Chem. Eng. Sci. 40, 1387–1392 (1985)

    Article  Google Scholar 

  • Huang, J.S., Sumpter, B.G., Meunier, V.: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008). doi:10.1002/chem.200800639

    Article  Google Scholar 

  • Huang, J.S., Sumpter, B.G., Meunier, V.: Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008). doi:10.1002/anie.200703864

    Article  Google Scholar 

  • Johnson, A.M., Newman, J.: Desalting by means of carbon electrodes. J. Electrochem. Soc. 118, 510–517 (1971)

    Article  Google Scholar 

  • Li, Y.H., Zhang, S.Y., Yu, Q.M.: Hierarchical porous materials for supercapacitors. Adv. Mater. Res. 750–752, 894–898 (2013)

    Article  Google Scholar 

  • Locke, B.R.: Electrophoretic transport in porous media: a volume-averaging approach. Ind. Eng. Chem. Res. 37, 615–625 (1998)

    Article  Google Scholar 

  • Mani, A., Bazant, M.Z.: Deionization shocks in microstructures. Phys. Rev. E 84, 061504 (2011)

    Article  Google Scholar 

  • Maxwell, J.C.: Treatise on Electricity and Magnetism, vol. I. Clarendon Press, Oxford (1881)

    Google Scholar 

  • Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems, Chap. 22, 3rd edn. Wiley, New York (2004)

    Google Scholar 

  • Nozad, I., Carbonell, R.G., Whitaker, S.: Heat conduction in multiphase systems I: theory and experiment for two-phase systems. Chem. Eng. Sci. 40, 843–855 (1985)

    Article  Google Scholar 

  • Ochoa, J.A.: Diffusion and Reaction in Heterogeneous Porous Media. Ph.D. Dissertation, Department of Chemical Engineering, University of California, Davis, California (1988)

  • Ochoa-Tapia, J.A., Del Rio, J.A., Whitaker, S.: Bulk and surface diffusion in porous media: an application of the surface-averaging theorem. Chem. Eng. Sci. 48, 2061–2082 (1993)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Stroeve, P., Whitaker, S.: Diffusive transport in two-phase media: spatially periodic models and Maxwell’s theory for isotropic and anisotropic systems. Chem. Eng. Sci. 49, 709–726 (1994)

    Article  Google Scholar 

  • Porada, S., Zhao, R., Van der Wal, A., Presser, V., Biesheuvel, P.M.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiments. Chem. Eng. Sci. 14, 2537–2564 (1993a)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: One and two-equation models for transient diffusion processes in two-phase systems. In: Hartnett JP, Irvine TF (eds) Advances in Heat Transfer, vol. 23, pp. 369–465. Academic Press, New York (1993b)

  • Quintard, M., Whitaker, S.: Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. Int. J. Heat Mass Transf. 38, 2779–2796 (1995)

    Article  Google Scholar 

  • Quintard, M., Kaviani, M., Whitaker, S.: Two-medium treatment of heat transfer in porous media: numerical results for effective properties. Adv. Water Resour. 20, 77–94 (1997)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Transport in chemical and mechanical heterogeneous porous media IV: large-scale mass equilibrium for solute transport with adsorption. Adv. Water Resour. 22, 33–57 (1998)

    Article  Google Scholar 

  • Rayleigh, R.S.: On the influence of obstacles arranged in rectangular order upon the properties of the medium. Philos. Mag. 34, 481–489 (1892)

    Article  Google Scholar 

  • Ruiz-Rosas, R., Valero-Romero, M.J., Salinas-Torres, D., Rodríguez-Mirasol, J., Cordero, T., Morallón, E., Cazorla-Amorós, D.: Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. Chem. Sus. Chem. 7, 1458–1467 (2014)

    Article  Google Scholar 

  • Schmuck, M., Bazant, M.Z.: Homogenization of the Poisson–Nernst–Planck Equations for Ion Transport in Charged Porous Media. (2014). arXiv:1202.1916v2

  • Sharma, K., Mayes, R.T., Kiggans Jr., J.O., Yiacoumi, S., Gabitto, J., DePaoli, D.W., Dai, S., Tsouris, C.: Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials. Sep. Purif. Technol. 116, 206–213 (2013)

    Article  Google Scholar 

  • Sharma, K., Kim, Y.-H., Gabitto, J., Mayes, R.T., Yiacoumi, S., Bilheux, H.Z., Walker, L.M.H., Dai, S., Tsouris, C.: Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions. Langmuir 31, 1038–1047 (2015)

    Article  Google Scholar 

  • Stern, O.: The theory of the electrolytic double-layer. Z. Electrochem 30, 508 (1924)

    Google Scholar 

  • Suss, M.E., Baumann, T.F., Worsley, M.A., Rose, K.A., Jaramillo, T.F., Stadermann, M., Santiago, J.: Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity. J. Power Sour. 241, 266–273 (2013)

    Article  Google Scholar 

  • Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D., Dai, S.: Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 45, 10243–10249 (2011)

    Article  Google Scholar 

  • Ulson de Souza, U.A.A., Whitaker, S.: The modeling of a textile dyeing process utilizing the method of volume averaging. Braz. J. Chem. Eng. 20, 445–453 (2003)

    Google Scholar 

  • Valdès-Parada, F.J., Goyeau, B., Ochoa-Tapia, J.A., Whitaker, S.: Diffusive mass transfer between a microporous medium and a homogeneous fluid: jump boundary conditions. Chem. Eng. Sci. 61, 1692–1704 (2006)

    Article  Google Scholar 

  • Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Menendez, R., Ricardo Santamaria, R.: Capacitive deionization of NaCl solutions with modified activated carbon electrodes. Energy Fuels 24, 3329–3333 (2010)

    Article  Google Scholar 

  • Whitaker, S.: Diffusion and reaction in a micropore-macropore of a model porous medium. Lat. Am. J. Chem. Eng. Appl. Chem. 13, 143–183 (1983)

    Google Scholar 

  • Whitaker, S.: Transient diffusion adsorption and reaction in porous catalysts: the reaction controlled, quasi-steady catalytic surface. Chem. Eng. Sci. 41, 3015–3022 (1986a)

    Article  Google Scholar 

  • Whitaker, S.: Local thermal equilibrium: an application to packed bed catalytic reactor design. Chem. Eng. Sci. 41, 2029–2039 (1986b)

    Article  Google Scholar 

  • Whitaker, S.: Improved constraints for the principle of local thermal equilibrium. Ind. Eng. Chem. Res. 30, 983–997 (1991)

    Article  Google Scholar 

  • Whitaker, S.: Theory and Application of Transport in Porous Media: The Method of Volume Averaging, p. 219. Kluwer Academic, London (1999)

    Google Scholar 

  • Yang, K.-L., Tung-Yu, Ying, Yiacoumi, S., Tsouris, C., Vittoratos, E.S.: Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model. Langmuir 17, 1961–1969 (2001)

    Article  Google Scholar 

  • Zanotti, F., Carbonell, R.G.: Development of transport equations for multiphase III: application to heat transfer in packed bed. Chem. Eng. Sci. 35, 299–311 (1984)

    Article  Google Scholar 

  • Zheng, Z., Gao, Q.: Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors. J. Power Sour. 196, 1615–1619 (2011)

    Article  Google Scholar 

  • Zou, L., Li, L., Song, H., Morris, G.: Using mesoporous carbon electrodes for brackish water desalination. Water Res. 42, 2340–2348 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially conducted at the Oak Ridge National Laboratory (ORNL) and supported by the Laboratory Director’s Research and Development Seed Program of ORNL. ORNL is managed by UT-Battelle, LLC, under Contract DE-AC05-0096OR22725 with the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Gabitto.

Appendices

Appendix 1

1.1 Constraints for Salt Concentration One-Equation Model

An approximate form for the two-equation model can be written using the following form of the concentration deviations (Quintard and Whitaker 1993b):

$$\begin{aligned} {\tilde{c}}_{i}= & {} {\underline{{g}}}_{i} \,{\bullet }\,\underline{\nabla } \langle {c}_{\kappa } \rangle ^{{\kappa }}+{\underline{{h}}}_{i} \,{\bullet }\,\underline{\nabla } \langle {c}_{\gamma } \rangle ^{{\gamma }}+{s}_{i} (\langle {c}_{\kappa } \rangle ^{{\kappa }}-\langle {c}_{\gamma } \rangle ^{{\gamma }}) + \cdots +\cdots + \psi _i, i = \kappa , \gamma .\qquad \end{aligned}$$
(103)

Introducing (103) into Eqs. (21) and (27) we get,

$$\begin{aligned} \varepsilon _\kappa (1+\langle {F}_1 \rangle ) \partial \langle {c}_{\kappa } \rangle ^{{\kappa }}/\partial t= & {} \underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\kappa \underline{\underline{D}}_{\kappa \kappa }^{*} \,{\bullet }\,\underline{\nabla } \langle {c}_{\kappa } \rangle ^{{\kappa }}\right\} +\underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\kappa \underline{\underline{D}}_{\kappa \gamma }^{*} \,{\bullet }\,\underline{\nabla } \langle {c}_{\gamma } \rangle ^{{\gamma }}\right\} \nonumber \\&-\, \varepsilon _\kappa \langle {F}_2 \rangle \partial \langle \phi _{\kappa } \rangle ^{{\kappa }}/\partial t + \frac{{1}}{{V}_\mathrm{M}} \int \limits _{{A}_{{\gamma \kappa }}} {{\underline{{n}}}_{{\kappa \gamma }} \,{\bullet }\,{\underline{\underline{D}}}_{\mathrm{eff}} \,{\bullet }\, \underline{\nabla }{c}_{\kappa } \,{\hbox {d}A}}. \end{aligned}$$
(104)
$$\begin{aligned} \varepsilon _\gamma \partial \langle {c}_{\gamma } \rangle ^{{\gamma }}/\partial t= & {} \underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\gamma \underline{\underline{D}}_{\gamma \gamma }^{*} \,{\bullet }\,\underline{\nabla } \langle {c}_{\gamma } \rangle ^{{\gamma }}\right\} +\underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\gamma \underline{\underline{D}}_{\gamma \kappa }^{*} \,{\bullet }\,\underline{\nabla } \langle {c}_{\kappa } \rangle ^{{\kappa }}\right\} \nonumber \\&+\, \frac{{1}}{{V}_\mathrm{M}} \int \limits _{{A}_{{\gamma \kappa }}} {{\underline{{n}}}_{{\gamma \kappa }} \,{\bullet }\,{D}_{\gamma } \underline{\underline{I}} \underline{\nabla }{c}_{\gamma } \,{\hbox {d}A}}. \end{aligned}$$
(105)

The \(\underline{\underline{D}}_{ij}^{*}\) tensors are calculated in the usual way as combinations of a transport coefficient and the integral of a closure parameter.

We follow Whitaker (1999) defining:

$$\begin{aligned} \langle {c}_\kappa \rangle ^{\kappa }=\langle {c}\rangle ^{{*}} +{ \hat{{c}}}_{k}, \end{aligned}$$
(106)
$$\begin{aligned} \langle {c}_{\gamma } \rangle ^{{\gamma }}=\langle {c}\rangle ^{{*}} +{ \hat{{c}}}_{\gamma }. \end{aligned}$$
(107)

Summation of Eqs. (104) and (105) plus introduction of (106) and (107) into the resulting equations leads after algebraic manipulations to,

$$\begin{aligned} (1+\varepsilon _\kappa \langle {F}_1 \rangle ) \partial \langle {c}\rangle ^{{*}}/\partial t= & {} \underline{\nabla } \,{\bullet }\,\left\{ \underline{\underline{{D}}}^{*} \,{\bullet }\,\underline{\nabla } \langle {c}\rangle ^{{*}}\right\} - \varepsilon _\kappa \langle {F}_2 \rangle \partial \langle \phi \rangle ^{{*}}/\partial t - \varepsilon _\kappa \langle {F}_1 \rangle \partial { \hat{{c}}}_{k} /\partial t\nonumber \\&+\,\underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\kappa (\underline{\underline{D}}_{\kappa \kappa }^{*} -\underline{\underline{D}}_{\gamma \gamma }^{*} )\,{\bullet }\,\underline{\nabla } { \hat{{c}}}_{k} \right\} - \varepsilon _\kappa \langle {F}_2 \rangle \partial \hat{{\phi }}_{k} /\partial t. \end{aligned}$$
(108)

Comparison of Eq. (108) with (44) shows that the last three terms in the right-hand side of Eq. (108) should be negligible for the one-equation model to be applicable, therefore:

  1. (I)

    \(\varepsilon _\kappa \langle {F}_2 \rangle \partial \hat{{\phi }}_{k} /\partial t\ll \varepsilon _\kappa \langle {F}_2 \rangle \partial \langle \phi \rangle ^{{*}}/\partial t\)

  2. (II)

    \(\varepsilon _\kappa \langle {F}_1 \rangle \partial { \hat{{c}}}_{k} /\partial t \ll (1 + \varepsilon _\kappa \langle {F}_1 \rangle ) \partial \langle {c}\rangle ^{{*}}/\partial t\)

  3. (III)

    \(\underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\kappa (\underline{\underline{D}}_{\kappa \kappa }^{*} -\underline{\underline{D}}_{\gamma \gamma }^{*} )\,{\bullet }\,\underline{\nabla } { \hat{{c}}}_{k} \right\} \ll \underline{\nabla } \,{\bullet }\,\left\{ \underline{\underline{{D}}}^{*} \,{\bullet }\,\underline{\nabla } \langle {c}\rangle ^{{*}}\right\} \).

The first constraint will be discussed in “Appendix 2”. We will carry on (II) and (III) an order of magnitude analysis. We will use the assumptions that the characteristic length scales for the deviation \(({ \hat{{c}}}_{k} )\) and for the spatial average variable \((\langle {c}\rangle ^{{*}})\) are of the same order plus that the characteristic times for variation of the deviations of salt concentration and potential are also of the same order. After algebraic manipulations we get,

  1. (IV)

    \(\hat{{\phi }}_{k} /\Delta \langle \phi \rangle ^{{*}}\ll 1\)

  2. (V)

    \({ \hat{{c}}}_{k} /\Delta \langle {c}\rangle ^{{*}}\ll 1\)

  3. (VI)

    \(\varepsilon _\kappa (\underline{\underline{D}}_{\kappa \kappa }^{*} -\underline{\underline{D}}_{\gamma \gamma }^{*} )/\underline{\underline{{D}}}^{*} { \hat{{c}}}_{k} /\Delta \langle {c}\rangle ^{{*}}\ll 1\).

Considering that \(\varepsilon _{\kappa }\;(\underline{\underline{D}}_{\kappa \kappa }^{*} -\underline{\underline{D}}_{\gamma \gamma }^{*} )/ \underline{\underline{{D}}}^{*}\le \odot \left\{ 1\right\} \) leads to the conclusion that the condition of local equilibrium will be dominated by the value of \({\hat{{c}}}_{k}/\Delta \langle {c}\rangle ^{{*}}\). In conclusion, we need to estimate the \({\hat{{c}}}_{k}/\Delta \langle {c}\rangle ^{{*}}\) ratio to determine application conditions for the one-equation model. In order to do so we start from Eqs. (104) and (105). We first, follow Quintard and Whitaker (1993b) replacing the exchange terms in both equations by a mass transfer term as shown below. Second, we subtract Eq. (105) divided by \(\varepsilon _{\gamma }\) from Eq. (104) divided by \(\varepsilon _{\kappa }\) to get,

$$\begin{aligned}&\left( 1 +\varepsilon _\gamma \langle {F}_1 \rangle \right) \partial \left[ \langle {c}_{\kappa } \rangle ^{{\kappa }}-\langle {c}_\gamma \rangle ^{\gamma }\right] /\partial t -\underline{\nabla } \,{\bullet }\,\left\{ {\underline{\underline{D}}}^\circ \,{\bullet }\,\underline{\nabla } \left[ \langle {c}_{\kappa } \rangle ^{{\kappa }}-\langle {c}_\gamma \rangle ^{\gamma }\right] \right\} \nonumber \\&\qquad +\, a_\mathrm{vM} k\varepsilon *\left[ \langle {c}_{\kappa } \rangle ^{{\kappa }}-\langle {c}_\gamma \rangle ^{\gamma }\right] \nonumber \\&\quad = -\langle {F}_1 \rangle \partial \langle {c}\rangle ^{{*}}/\partial t+\underline{\nabla } \,{\bullet }\,\left\{ \left( \underline{\underline{D}}_{\kappa \kappa }^{*} -\underline{\underline{D}}_{\gamma \gamma }^{*} \right) \,{\bullet }\,\underline{\nabla } \langle {c}\rangle ^{{*}}\right\} -\langle {F}_2 \rangle \partial \langle \phi _\kappa \rangle ^{\kappa }/\partial t. \end{aligned}$$
(109)

Here, \({\underline{\underline{D}}}^\circ =\left\{ \varepsilon _\gamma \underline{\underline{D}}_{\kappa \kappa }^{*} - \underline{\underline{D}}_{\kappa \gamma }^{*} + \varepsilon _\kappa \underline{\underline{D}}_{\gamma \gamma }^{*} \right\} ,\varepsilon ^*= 1/\left( {\varepsilon _\kappa \varepsilon _\gamma } \right) , k\) is a mass transfer coefficient calculated from the closure problem for the parameters \(s_{i}\),

$$\begin{aligned} k ={-}\frac{{1}}{{{ A}}_{{\gamma \kappa }}} \int \limits _{{A}_{{\gamma \kappa }}} {{\underline{{n}}}_{{\kappa \gamma }} \,{\bullet }\,{\underline{\underline{D}}}_{\mathrm{eff}} \,{\bullet }\, \underline{\nabla }{s}_{\kappa } \,{\hbox {d}A}} = \frac{{1}}{{A}_{{\gamma \kappa }}} \int \limits _{{A}_{{\gamma \kappa }}} {{\underline{{n}}}_{{\gamma \kappa }} \,{\bullet }\,{D}_{\gamma } \underline{\nabla }{s}_{\gamma } \,{\hbox {d}A}}. \end{aligned}$$
(110)

An order of magnitude analysis is conducted in all terms in Eq. (109). The absolute value of all estimates is combined to produce the following estimate:

$$\begin{aligned} \frac{{\left[ \langle {{c}}_{{{\kappa }}} \rangle ^{{{\kappa }}} - \langle {{c}}_{\gamma } \rangle ^{\gamma } \right] }}{{\Delta \langle {{c}}\rangle ^{*}}}= & {} {{\odot }}\left\{ \left[ {\frac{{{{-}}\langle {{F}}_{1} \rangle /{{t}}^{*} + \left( \underline{\underline{{{D}}}}_{{\kappa \kappa }}^{*} {{-}}\underline{\underline{{{D}}}}_{{\gamma \gamma }}^{*} \right) /L_{{{c}}} {{/L}}_{{\Delta {{c}}}} {{-}}\langle {{F}}_{2} \rangle \Delta \langle \phi _{\kappa } \rangle ^{\kappa } {{/}}\Delta \langle {{c}}\rangle ^{*} {{/ t}}^{*} }}{{\left( 1 + \varepsilon _{\gamma } \langle {{F}}_{1} \rangle \right) /{{t}}^{*} {{- (}}\underline{\underline{{{D}}}}^{\circ } {{/L}}_{{{{cd}}}} {{/L}}_{{\Delta {{cd}}}} + {{a}}_{{{\mathrm{vM}}}} {{k}}^{*} \varepsilon ^{*} }}} \right] \right\} .\nonumber \\ \end{aligned}$$
(111)

Here, we can use, \({t}^{{*}}\cong L_c L_{\Delta c} /\underline{\underline{D}}^{{*}}\cong L_c L_{\Delta c} /(\underline{\underline{D}}_{\kappa \kappa }^{*} -\underline{\underline{D}}_{\gamma \gamma }^{*} )\cong L_{cd} L_{\Delta cd} /{\underline{\underline{D}}}^\circ \), to get

$$\begin{aligned}&\frac{{\left[ \langle {{c}}_{{{\kappa }}} \rangle ^{{{\kappa }}} - \langle {{c}}_{\gamma } \rangle ^{\gamma } \right] }}{{\Delta \langle {{c}}\rangle ^{*}}}~ = {{\odot }}\left\{ \left[ {\frac{{{{-}}\langle {{F}}_{1} \rangle + 1{{-}}\langle {{F}}_{2} \rangle \langle \phi _{\kappa } \rangle ^{\kappa } /\Delta \langle {{c}}\rangle ^{*}}}{{(1 + \varepsilon _{\gamma } \langle {{F}}_{1} \rangle ){{-}}1 + {{a}}_{{{\mathrm{vM}}}} {{k}}^{*} \varepsilon ^{*} {{t}}^{*} }}} \right] \right\} ,\hbox {or}\end{aligned}$$
(112)
$$\begin{aligned}&\frac{{l_{k}^{2}}}{{L^{2}}}\left[ {\frac{{{{-}}\langle {{F}}_{1} \rangle + 1{{-}}\langle {{F}}_{2} \rangle \langle \phi _{\kappa } \rangle ^{\kappa } /\Delta \langle {{c}}\rangle ^{*}}}{{\frac{{l_{k}^{2} \varepsilon _{\gamma } \langle {{F}}_{1} \rangle }}{{L^{2}}} + 1}}} \right] \ll 1. \end{aligned}$$
(113)

Here, \(L^{2}\) is the transport process characteristic length, \(L^{2}\cong \,L_{c}\,L_{\Delta c}, l_k^2={{D}_{{xx}}^{*}}/{a_\mathrm{vM} k\varepsilon ^{{*}}}\) is a mixed length scale combining interfacial and mass transport. The area per unit volume \((a_\mathrm{vM})\) is of \(\odot \left\{ 1/l_{\gamma \kappa }\right\} \), with \(l_{\gamma \kappa }\) a combined small geometrical length scale. It is easy to demonstrate that \(a_\mathrm{vM} \rightarrow \infty \) as \(l_{\gamma \kappa }\) tends toward zero (Quintard and Whitaker 1995), thus local equilibrium occurs when \(l_{\gamma \kappa }\) is very small.

Appendix 2

1.1 Constraints for Electrostatic Potential One-Equation Model

An approximate form for the two-equation model can be written using the following form of the potential deviations (del Rìo and Whitaker 2000b):

$$\begin{aligned} {\tilde{\phi }}_{i} ={\underline{{g}}}_{i} \,{\bullet }\,\underline{\nabla } \langle \phi _{\kappa } \rangle ^{{\kappa }}+{\underline{{h}}}_{i} \,{\bullet }\,\underline{\nabla } \langle \phi _{\gamma } \rangle ^{{\gamma }}+{s}_{i} (\langle \phi _{\kappa } \rangle ^{{\kappa }}-\langle \phi _{\gamma } \rangle ^{{\gamma }}) + \cdots +\cdots + \psi _i, i = \kappa , \gamma .\qquad \end{aligned}$$
(114)

Introducing (114) into Eqs. (50) and (56) we get,

$$\begin{aligned} \varepsilon _\kappa \langle {G}_2 \rangle ^{}\partial \langle \phi _{\kappa } \rangle ^{{\kappa }}/\partial t= & {} \underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\kappa \underline{\underline{{U}}}_{\kappa \kappa }^{*} \,{\bullet }\,\langle {c}_{\kappa } \rangle ^{{\kappa }}\underline{\nabla } \langle \phi _{\kappa } \rangle ^{{\kappa }}\right\} +\underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\kappa \underline{\underline{{U}}}_{\kappa \gamma }^{*} \,{\bullet }\,\langle {c}_{\kappa } \rangle ^{{\kappa }}\underline{\nabla } \langle \phi _{\gamma } \rangle ^{{\gamma }}\right\} \nonumber \\&+\, \frac{{1}}{{V}_\mathrm{M}} \int \limits _{{A}_{{\gamma \kappa }}} {{\underline{{n}}}_{{\kappa \gamma }} \,{\bullet }\,{\underline{\underline{{U}}}}_{\mathrm{eff}} \,{\bullet }\,{c}_{\kappa } \underline{\nabla }\phi _{\kappa } \,{\hbox {d}A}} - \varepsilon _\kappa \langle {G}_1 \rangle ^{}\partial \langle {c}_{\kappa } \rangle ^{{\kappa }}/\partial t. \end{aligned}$$
(115)
$$\begin{aligned} 0= & {} \underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\gamma \underline{\underline{{U}}}_{\gamma \gamma }^{*} \,{\bullet }\,\langle {c}_{\gamma } \rangle ^{{\gamma }}\underline{\nabla } \langle \phi _{\gamma } \rangle ^{{\gamma }}\right\} +\underline{\nabla } \,{\bullet }\,\left\{ \varepsilon _\gamma \underline{\underline{{U}}}_{\gamma \kappa }^{*} \,{\bullet }\,\langle {c}_{\gamma } \rangle ^{{\gamma }}\underline{\nabla } \langle \phi _{\kappa } \rangle ^{{\kappa }}\right\} \nonumber \\&+\, \frac{{1}}{{V}_\mathrm{M}} \int \limits _{{A}_{{\gamma \kappa }}} {{\underline{{n}}}_{{\gamma \kappa }} \,{\bullet }\,{U}_{\gamma } {c}_{\gamma } \underline{\nabla }\phi _{\gamma } \,{\hbox {d}A}}. \end{aligned}$$
(116)

We follow Whitaker (1999) defining:

$$\begin{aligned} \langle \phi _\kappa \rangle ^{\kappa }= & {} \langle \phi \rangle ^{{*}} + \hat{{\phi }}_{k}, \end{aligned}$$
(117)
$$\begin{aligned} \langle \phi _{\gamma } \rangle ^{{\gamma }}= & {} \langle \phi \rangle ^{{*}} + \hat{{\phi }}_{\gamma }. \end{aligned}$$
(118)

The same procedure used in “Appendix 1” produces the following estimate:

$$\begin{aligned}&\displaystyle \frac{[\langle \phi _{\kappa } \rangle ^{{\kappa }}-\langle \phi _\gamma \rangle ^{\gamma }]}{\Delta \langle \phi \rangle ^{{*}}}= \odot \left\{ \left[ {\frac{{-}\langle {G}_2 \rangle +\langle {c}\rangle ^{{*}}{-}\langle {G}_1 \rangle \langle {c}\rangle ^{{*}}/\Delta \langle \phi \rangle ^{{*}}}{\varepsilon _\gamma \langle {G}_2 \rangle {-}\varepsilon _\gamma \langle {c}\rangle ^{{*}}+{a}_{\mathrm{vM}} { k}\varepsilon ^{{*}}{t}^{{*}}\langle {c}\rangle ^{{*}}}} \right] \right\} , \hbox {or} \end{aligned}$$
(119)
$$\begin{aligned}&\displaystyle \left[ {\frac{{-}\langle {G}_2 \rangle +\langle {c}\rangle ^{{*}}{-}\langle {G}_1 \rangle \langle {c}\rangle ^{{*}}/\Delta \langle \phi \rangle ^{{*}}}{\varepsilon _\gamma \langle {G}_2 \rangle {-}\varepsilon _\gamma \langle {c}\rangle ^{{*}}+{a}_{\mathrm{vM}} { k}\varepsilon ^{{*}}{t}^{{*}}\langle {c}\rangle ^{{*}}}} \right] \ll 1. \end{aligned}$$
(120)

The introduction of a mixed length scale with similar meaning to the one defined in “Appendix 1” leads to the following constraint for the potential:

$$\begin{aligned} \frac{l_k^2}{L^{2}}\left[ {\frac{{-}\langle {G}_2 \rangle +\langle {c}\rangle ^{{*}}{-}\langle {G}_1 \rangle \langle {c}\rangle ^{{*}}/\Delta \langle \phi \rangle ^{{*}}}{\frac{l_k^2 \varepsilon _\gamma }{L^{2}}(\langle {G}_2 \rangle {-}\langle {c}\rangle ^{{*}})+\langle {c}\rangle ^{{*}}}} \right] \ll 1. \end{aligned}$$
(121)

Appendix 3

1.1 Closure Problem Derivation

We start from Eqs. (39) to (42). In the case of infinite cylinders, the problem becomes independent of the axial direction \((z/r_{2})\) and, following the useful relationships presented by Ochoa-Tapia et al. (1993), we can rewrite the closure problem as:

$$\begin{aligned}&\frac{{1}}{{r}^{{*}}} \frac{\partial {G}_{{\gamma ,x}}}{\partial {r}^{{*}}}+\frac{\partial ^{2}{G}_{{\gamma ,x}}}{\partial {r}^{{*2}}}+\frac{{1}}{{r}^{{*2}}} \frac{\partial ^{2}{G}_{{\gamma ,x}}}{\partial {\theta }^{{2}}}={ 0}, \quad \hbox { in the }\gamma \hbox {-phase} \end{aligned}$$
(122)
$$\begin{aligned}&\frac{\partial {G}_{{\gamma , x}}}{\partial {r}^{{*}}} = \delta \frac{\partial {G}_{{\kappa , x}}}{\partial {r}^{{*}}}{ - { cos } \theta (1 -}\delta {)}, \quad @ r^{*}= r_1 /r_2 \end{aligned}$$
(123)
$$\begin{aligned}&{G}_{{\gamma , x}} ={ G}_{{\kappa , x}} \quad @ r^{*}= r_1 /r_2 \end{aligned}$$
(124)
$$\begin{aligned}&\frac{{1}}{{r}^{{*}}} \frac{\partial {G}_{{\kappa , x}}}{\partial {r}^{{*}}}+\frac{\partial ^{2}{G}_{{\kappa , x}}}{\partial {r}^{{*2}}}+\frac{{1}}{{r}^{{*2}}} \frac{\partial ^{2}{G}_{{\kappa , x}}}{\partial {\theta }^{{2}}}={ 0},\quad \hbox { in the }\kappa \hbox {-phase} \end{aligned}$$
(125)
$$\begin{aligned}&\frac{\partial {G}_{{\kappa , x}}}{\partial {r}^{{*}}} ={ 0}, \quad @ r^{*}= 0 \end{aligned}$$
(126)
$$\begin{aligned}&{G}_{{\gamma , x}} =0, \quad @ r^{*}= 1. \end{aligned}$$
(127)

Here, the dimensionless closure variable \((G_{i,x})\) is given by \(G_{i,x} = g_{i,x} /r_{2}, r^{*}= r/r_{2}, g_{i,x}\) the dimensional closure variable is given by \({g}_{{i,x}} ={\underline{{n}}}_{{\gamma \kappa }} \,{\bullet }\, \underline{{g}}_{i}, r^{*}= r/r_{2,}\delta \) is the ratio of phase diffusivities, and \(\delta = D_{\kappa , eff}/D_{\gamma }\).

Equation (127) replaces the periodic boundary conditions in Chang’s unit cell for cylindrical coordinates. The equation used to determine \({{D}_{{xx}}^{*}}/{{D}_{\gamma }}\) is given by:

$$\begin{aligned} \left. \frac{{D}_{{xx}}^{*}}{{D}_{\gamma }}= \left\{ \varepsilon _\gamma + \left( 1-\varepsilon _\gamma \right) \delta \right\} + \left( {\delta - 1} \right) \frac{{1}}{{V}_\mathrm{M}}\int \limits _{{A}_{{\gamma \kappa }}} {{ cos }\left( {\theta } \right) { G}_{{\gamma , x}} \,{\hbox {d}A}} \right) . \end{aligned}$$
(128)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabitto, J., Tsouris, C. Modeling the Capacitive Deionization Process in Dual-Porosity Electrodes. Transp Porous Med 113, 173–205 (2016). https://doi.org/10.1007/s11242-016-0688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0688-9

Keywords

Navigation