Skip to main content
Log in

Reflection and Refraction of P Wave at the Interface Between Thermoelastic and Porous Thermoelastic Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Reflection and refraction phenomenon due to an obliquely incident longitudinal wave at a plane interface between an isotropic, homogeneous, thermoelastic medium and a porous thermoelastic medium is studied. Firstly, the generalized thermoelastic theory (G-TE) of wave propagation in a saturated porous thermoelastic medium is developed in the context of the coupled thermoelastic theories of Biot, the theory of generalized thermoelasticity of Lord–Shulman (with one relaxation time) and that of Green–Lindsay (with two relaxation times). Then, the expressions of amplitude ratios of various reflected and refracted waves to that of incident P wave are derived. Numerical results are obtained and used to analyze the difference of reflection amplitude of four kinds of reflection waves, and refraction amplitude of three kinds of refraction waves among the G-TE theory, the Lord–Shulman theory and the Green–Lindsay theory in the case of porous thermoelasticity. The effect of relaxation time \(\tau _{_1} \) and thermal expansion coefficient \(a_\mathrm{s}\) on the reflection and refraction of the incident P-wave is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Abd-alla, A.N., Al-Dawy, A.A.S.: The reflection phenomena of SV waves in a generalized thermoelastic medium. Int. J. Math. Math. Sci. 23(8), 529–540 (2000)

    Article  Google Scholar 

  • Abousleiman, Y., Ekbote, S.: Solutions for the inclined borehole in a porothermoelastic transversely isotropic medium. J. Appl. Mech. 72, 102–114 (2005)

    Article  Google Scholar 

  • Biot, M.: Thermoelasticity and irreversible thermo-dynamics. J. Appl. Phys. 27, 249–253 (1956)

    Google Scholar 

  • Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  Google Scholar 

  • Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  Google Scholar 

  • Chakraborty, N., Singh, M.C.: Reflection and refraction of a plane thermoelastic wave at a solid–solid interface under perfect boundary condition, in presence of normal initial stress. J. Appl. Math. Model. 35(11), 5286–5301 (2011)

    Article  Google Scholar 

  • Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. J. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  • Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  Google Scholar 

  • Haibing, T., Ganbin, L., Kanghe, X., Rongyue, Z., Yuebao, D.: Characteristics of wave propagation in the saturated thermoelastic porous medium. J. Transp. Porous Media 103, 47–68 (2014)

    Article  Google Scholar 

  • Hetnarski, R.B., Ignaczak, J.: Soliton-like waves in a low temperature non-linear thermoelastic solid. J. Int. J. Eng. Sci. 34, 1767–1787 (1996)

    Article  Google Scholar 

  • Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stress. 22, 451–476 (1999)

    Article  Google Scholar 

  • Kumar, R., Chawla, V.: Reflection and refraction of plane wave at the interface between elastic and thermoelastic media with three-phase-lag model. Int. Commun. Heat Mass Transf. 48, 53–60 (2013)

    Article  Google Scholar 

  • Kumar, R., Sarthi, P.: Reflection and refraction of thermoelastic plane waves at an interface between two thermoelastic media without energy dissipation. J. Arch. Ration. Mech. Anal. 58(1), 155–185 (2006)

    Google Scholar 

  • Liu, G.B., Xie, K.H., Zheng, R.Y.: Model of nonlinear coupled thermo-hydro-elastodynamics response for a fluid-saturated poroelastic medium. Sci. China Ser. E Technol. Sci. 52(8), 2373–2383 (2009)

    Article  Google Scholar 

  • Liu, G.B., Xie, K.H., Ye, R.H.: Mode of a spherical cavity’s thermo-elastodynamic response in a fluid-saturated porous medium for non-torsional loads. J. Comput. Geotech. 37(3), 381–390 (2010)

    Article  Google Scholar 

  • Liu, G.B., Liu, X.H., Ye, R.H.: The relaxation effects of a fluid-saturated porous medium using the generalized thermoviscoelasticity theory. Int J Electr. Eng. Educ. Sci. 48(9), 795–808 (2010)

    Google Scholar 

  • Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  • Pecker, C., Deresiewicz. H.: Thermal effects on wave propagation in liquid-filled porous media[J]. Acta Mechan. 16, 45–64 ( 1973)

  • Rong-yue, Z., Gan-bin, L., Yue-bao, D., hai-bing, T.: Reflection of SV waves at interface of saturated porous thermo-elastic media. Chin. J. Geotech. Eng. 35(s2), 839–843 (2013). (in Chinese)

    Google Scholar 

  • Sharma, J.N., Kumar, V., Chand, D.: Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stress. 26, 925–942 (2003)

    Article  Google Scholar 

  • Sherief, H.H., Hamza, F., Saleh, H.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Article  Google Scholar 

  • Singh, B.: On propagation of plane waves in generalized porothermoelasticity. J. Bull. Seismol. Soc. Am. 101(2), 756–762 (2011)

    Article  Google Scholar 

  • Singh, M.C., Chakraborty, N.: Reflection and refraction of P-, SV- and thermal wave, at an initially stressed solid–liquid interface in generalized thermoelasticity. J. Appl. Math. Model. 37, 463–475 (2013)

    Article  Google Scholar 

  • Sinha, S.B., Elsibai, K.A.: Reflection of thermoelastic waves at a solid half-space with two thermal relaxation times. J. Therm. Stress. 19, 763–777 (1996)

    Article  Google Scholar 

  • Sinha, S.B., Elsibai, K.A.: Reflection and refraction of thermoelastic waves at an interface of two semi-infinite media with two thermal relaxation times. J. Therm. Stress. 20, 129–146 (1997)

    Article  Google Scholar 

  • Tzou, D.Y.: A unified field approach for heat conduction from macro to micro scales. ASME J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  • Youssef, H.M.: Theory of generalized porothermoelasticity. Int. J. Rock Mech. Min. Sci. 44, 222–227 (2007)

    Article  Google Scholar 

  • Zhou, Y., Rajapakse, R.K.N.D., Graham, J.: A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration. J. Int. J. Solids Struct. 35, 4659–4683 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The present research was supported by the National Natural Science Foundation of China (NSFC) under the approved Grant Nos. 51478228, 51278256, to which the authors are very grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganbin Liu.

Appendix

Appendix

$$\begin{aligned} d_{11}= & {} \left[ {\lambda +\alpha ^{2}M+\alpha M\zeta _1 +2G\cos ^{2}\theta _1 } \right] l_\mathrm{p1}^2 +\left( {a_\mathrm{c} \alpha M+\lambda ^{{\prime }}\left( {1\hbox {+i}\omega \tau _\mathrm{1} } \right) } \right) \eta _1 \\ d_{12}= & {} \left[ {\lambda +\alpha ^{2}M+\alpha M\zeta _2 +2G\cos ^{2}\theta _2 } \right] l_\mathrm{p2}^2 +\left( {a_\mathrm{c} \alpha M+\lambda ^{{\prime }}\left( {1\hbox {+i}\omega \tau _\mathrm{1} } \right) } \right) \eta _2 \\ d_{13}= & {} \left[ {\lambda +\alpha ^{2}M+\alpha M\zeta _3 +2G\cos ^{2}\theta _3 } \right] l_\mathrm{T}^2 +\left( {a_\mathrm{c} \alpha M+\lambda ^{{\prime }}\left( {1\hbox {+i}\omega \tau _\mathrm{1} } \right) } \right) \eta _3 \\ d_{14}= & {} -G\sin 2\theta _4 l_\mathrm{s}^2 \\ d_{15}= & {} -\left\{ {\left[ {\bar{{\lambda }}+2\bar{{G}}\cos ^{2}\theta _5 } \right] \bar{{l}}_\mathrm{p}^2 +\bar{{\lambda }}^{{\prime }}\left( {1\hbox {+i}\omega \tau _\mathrm{1} } \right) \beta _1 } \right\} \\ d_{16}= & {} -\left\{ {\left[ {\bar{{\lambda }}+2\bar{{G}}\cos ^{2}\theta _6 } \right] \bar{{l}}_\mathrm{T}^2 +\bar{{\lambda }}^{{\prime }}\left( {1\hbox {+i}\omega \tau _\mathrm{1} } \right) \beta _2 } \right\} \\ d_{17}= & {} \bar{{G}}\sin 2\theta _7 \bar{{l}}_\mathrm{s}^2 \\ d_{21}= & {} \hbox {G}l_\mathrm{p1}^2 \sin 2\theta _1 , d_{22} =\hbox {G}l_\mathrm{p2}^2 \sin 2\theta _2 , d_{23} =\hbox {G}l_\mathrm{T}^2 \sin 2\theta _3 , d_{24} =\hbox {G}\cos 2\theta _4 l_\mathrm{s}^2 \\ d_{25}= & {} \bar{{G}}\bar{{l}}_\mathrm{p}^2 \sin 2\theta _5 , d_{26} =\bar{{G}}\bar{{l}}_\mathrm{T}^2 \sin 2\theta _6 , d_{27} =-\bar{{G}}\cos 2\theta _7 \bar{{l}}_\mathrm{s}^2 \\ d_{31}= & {} l_\mathrm{p1} \cos \theta _1 , d_{32} =l_\mathrm{p2} \cos \theta _2 , d_{33} =l_\mathrm{T} \cos \theta _3 , d_{34} =-l_\mathrm{s} \sin \theta _4 \\ d_{35}= & {} \bar{{l}}_\mathrm{p} \cos \theta _5 , d_{36} =\bar{{l}}_\mathrm{T} \cos \theta _6 , d_{37} =\bar{{l}}_\mathrm{s} \sin \theta _7 \\ d_{41}= & {} l_\mathrm{p1} \sin \theta _1 , d_{42} =l_\mathrm{p2} \sin \theta _2 , d_{43} =l_\mathrm{T} \sin \theta _3 , d_{44} =l_\mathrm{s} \cos \theta _4 \\ d_{45}= & {} -\bar{{l}}_\mathrm{p} \sin \theta _5 , d_{46} =-\bar{{l}}_\mathrm{T} \sin \theta _6 , d_{47} =\bar{{l}}_\mathrm{s} \cos \theta _7 \\ d_{51}= & {} \eta _1 , {d_{52} =\eta _2}, {d_{53} =\eta _3 }, {d_{54} \hbox {=0}} \\ d_{55}= & {} -\beta _1, {d_{56} =-\beta _2 }, {d_{57} \hbox {=0}} \\ d_{61}= & {} \left( {\alpha +\zeta _1 } \right) l_\mathrm{p1}^2 +a_\mathrm{c} \eta _1 , d_{62} =\left( {\alpha +\zeta _2 } \right) l_\mathrm{p2}^2 +a_\mathrm{c} \eta _2 , d_{63} =\left( {\alpha +\zeta _3 } \right) l_\mathrm{T}^2 +a_\mathrm{c} \eta _3 \\ d_{64}= & {} 0, {d_{65} =0}, {d_{65} =0}, d_{66} =0, {d_{67} =0}, \\ d_{71}= & {} l_\mathrm{p1} \eta _1 \cos \theta _1 , d_{72} =l_\mathrm{p2} \eta _2 \cos \theta _2 , d_{73} =l_\mathrm{T} \eta _3 \cos \theta _3 \\ d_{74}= & {} 0, d_{75} =\bar{{l}}_\mathrm{p} \beta _1 \cos \theta _5 , d_{76} =\bar{{l}}_\mathrm{T} \beta _2 \cos \theta _6 , {d_{77} =0,} \\ b_1= & {} -\left[ {\lambda +\alpha ^{2}M+\alpha M\zeta _0 +2G\cos ^{2}\theta _0 } \right] l_\mathrm{p1}^2 -\left( {a_\mathrm{c} \alpha M+\lambda ^{{\prime }}\left( {1\hbox {+i}\omega \tau _\mathrm{1} } \right) } \right) \eta _0\\ b_2= & {} \hbox {G}l_\mathrm{p1}^2 \sin 2\theta _0 , b_3 =l_\mathrm{p1} \cos \theta _0 , b_4 =-l_\mathrm{p1} \sin \theta _0 , b_5 =-\eta _0\\ b_6= & {} -\left[ {\left( {\alpha +\zeta _0 } \right) l_\mathrm{p1}^2 +a_\mathrm{c} \eta _0 } \right] , b_7 =l_\mathrm{p1} \eta _0 \cos \theta _0 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Zheng, R., Liu, G. et al. Reflection and Refraction of P Wave at the Interface Between Thermoelastic and Porous Thermoelastic Medium. Transp Porous Med 113, 1–27 (2016). https://doi.org/10.1007/s11242-016-0659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0659-1

Keywords

Navigation