Skip to main content
Log in

Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, the phenomenon of reflection and refraction of homogeneous plane-P1-wave is considered at the plane interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium. Theoretical expressions of amplitude reflectivity/refractivity and energy ratio for all kinds of reflected/refracted waves generated by the incidence of plane-P1-wave are derived by taking into account the boundary conditions. The numerical results are obtained and used to discuss the relationship of amplitude reflectivity/refractivity and energy ratio for all kinds of reflected/refracted waves with the thermophysical parameters such as frequency, incident angle, thermal expansion coefficient and medium temperature. The results show that the amplitude reflectivity/refractivity and energy ratio for each reflected/refracted wave is affected obviously by the incident angle. The thermal expansion coefficient of the thermoelastic solid medium and the unsaturated porothermoelastic medium has different effects on the amplitude reflectivity/refractivity and energy ratio. The change of frequency and medium temperature only affects the amplitude refractivity and energy ratio of refracted P2, P3 and thermal waves and the amplitude reflectivity and energy ratio of reflected thermal wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Biot, J. Acoust. Soc. Am. 28, 179–191 (1956)

    Article  ADS  Google Scholar 

  2. M.A. Biot, J. Appl. Phys. 33, 1482–1498 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Xia, K. Yan, M. Sun, J. Hydraul. Eng. 35, 81–84 (2004)

    Google Scholar 

  4. X. Zhou, T. Xia, Chin. J. Geotech. Eng. 29, 750–754 (2007)

    Google Scholar 

  5. C. Zhao, L. Wang, Chin. J. Geophys. 49, 212–224 (2008)

    Google Scholar 

  6. M. Huang, Q. Ren, R. Zhou, S. Huang, Rock Soil Mech. 30, 113–117 (2009)

    Google Scholar 

  7. H. Chai, D. Zhang, H. Lu, D. Yang, C. Zhou, Chin. J. Geotech. Eng. 37, 1132–1141 (2015)

    Google Scholar 

  8. Q. Ma, F. Zhou, Soil Mech. Found. Eng. 53, 268–273 (2016)

    Article  Google Scholar 

  9. F. Zhou, Q. Ma, Int. J. Numer. Analyt. Methods Geomech. 40, 1513–1530 (2016)

    Article  Google Scholar 

  10. M.A. Biot, J. Appl. Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  11. H.W. Lord, Y. Shulman, J. Mech. Phys. Solids. 15, 299–309 (1967)

    Article  ADS  Google Scholar 

  12. A.E. Green, K.A. Lindsay, J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  13. H.H. Sheriff, Quart. Appl. Math. 44, 773–778 (1987)

    Article  MathSciNet  Google Scholar 

  14. A.E. Green, P.M. Naghdi, J. Elast. 31, 189–208 (1993)

    Article  Google Scholar 

  15. M. Aouadi, Z. Angew, Math. Phys. 61, 357–379 (2010)

    Google Scholar 

  16. B. Singh, Eur. J. Mech. -A/Solids. 30, 976–982 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.B. Sinha, K.A. Elsibai, J. Therm. Stress. 19, 749–762 (1996)

    Article  Google Scholar 

  18. S.B. Sinha, K.A. Elsibai, J. Therm. Stress. 20, 129–146 (1997)

    Article  Google Scholar 

  19. J.N. Sharma, V. Kumar, D. Chand, J. Therm. Stress. 26, 925–942 (2003)

    Article  Google Scholar 

  20. N. Chakraborty, M.C. Singh, Appl. Math. Model. 35, 5286–5301 (2011)

    Article  MathSciNet  Google Scholar 

  21. R. Zheng, G. Liu, Y. Deng, H. Tao, Chin. J. Geotech. Eng. 35, 839–843 (2013)

    Google Scholar 

  22. R. Zheng, G. Liu, G. Tang, J. Natl. Univ. Def. Technol. 36, 14–18 (2014)

    Google Scholar 

  23. H. Liu, F. Zhou, R. Zhang, G. Yue, Chin. J. Rock Mech. Eng. 39, 2693–2702 (2020)

    Google Scholar 

  24. H. Liu, F. Zhou, L. Hao, China Earthq. Eng. J. 43, 105–112 (2021)

    Google Scholar 

  25. W. Wei, R. Zheng, G. Liu, Transp. Porous Med. 113, 1–27 (2016)

    Article  Google Scholar 

  26. M.D. Sharma, Wave. Random Complex 28, 570–587 (2018)

    Article  ADS  Google Scholar 

  27. F. Zhou, H. Liu, S. Li, J. Therm. Stress. 42, 1256–1271 (2019)

    Article  Google Scholar 

  28. H. Liu, F. Zhou, L. Wang, R. Zhang, Int. J. Numer. Analyt. Methods Geomech. 44, 1656–1675 (2020)

    Article  Google Scholar 

  29. H. Liu, F. Zhou, R. Zhang, G. Yue, C. Liu, J. Therm. Stress. 43, 929–939 (2020)

    Article  Google Scholar 

  30. A.E. Abouelregal, Int. J. Eng. Sci. 49, 781–791 (2011)

    Article  MathSciNet  Google Scholar 

  31. J.M. Carcione, 3rd edn. (Elsevier, Amsterdam, 2014), pp. 411–412

  32. M. Kumar, R. Saini, Appl. Math. Mech.-Engl. Ed. 33, 797–816 (2012)

    Article  Google Scholar 

  33. M.D. Sharma, Adv. Water Resour. 61, 62–73 (2013)

    Article  ADS  Google Scholar 

  34. S. Shekhar, I.A. Parvez, Transp. Porous Med. 113, 405–430 (2016)

    Article  Google Scholar 

  35. E. Wang, J.M. Carcione, J. Ba, Y. Liu, Surv. Geophys. 41, 283–322 (2020)

    Article  ADS  Google Scholar 

  36. J. Yang, S. Wu, Y. Cai, J. Vib. Eng. Technol. 9, 128–137 (1996)

    Google Scholar 

  37. H. Liu, M. Jiang, F. Zhou, G. Lu, Arab. J. Geosci. 14, 1878 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878160; 52078128; 51978320; 11962016), Natural Science Foundation of Jiangsu Province (Grant No. BK20200400), and Six Talent Peaks Project in Jiangsu Province (Grant No. XNY-047), which are greatly appreciated. In addition, the authors express sincere thanks to the editors and anonymous reviewers for their constructive comments and suggestions that helped to improve this article.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878160; 52078128; 51978320; 11962016), Natural Science Foundation of Jiangsu Province (Grant No. BK20200400), and Six Talent Peaks Project in Jiangsu Province (Grant No. XNY-047).

Author information

Authors and Affiliations

Authors

Contributions

HL and FZ performed conceptualization; HL and GD done methodology; HL was involved in formal analysis and investigation and writing—original draft preparation; ZM done writing—review and editing; GD and FZ contributed to resources; GD supervised the study.

Corresponding author

Correspondence to Guoliang Dai.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Appendices

Appendix A: The specific form of coefficient in Eq. (1)

The specific form of coefficient in Eqs. (1a) − (1d), \({B}_{1}\), \({B}_{2}\), \({B}_{3}\), \({B}_{4}\), \({B}_{5}\), \({B}_{6}\), \({B}_{7}\), \({B}_{8}\), \({C}_{1}\), \({C}_{2}\), \({C}_{3}\), \({C}_{4}\), \({D}_{0}\), \({D}_{1}\), \({D}_{2}\), \({D}_{3}\), \({\vartheta }^{l}\), \({\vartheta }^{g}\), \({\upsilon }^{l}\) and \({\upsilon }^{g}\) is given as follows (Zhou et al. [27]):

$$\left.\begin{array}{c}{B}_{1}=\frac{{A}_{22}}{{A}_{22}{A}_{11}-{A}_{12}{A}_{21}}, {B}_{2}=\frac{{A}_{22}{A}_{14}-{A}_{12}{A}_{24}}{{A}_{14}{(A}_{22}{A}_{11}-{A}_{12}{A}_{21})}, {B}_{3}=\frac{{A}_{22}{A}_{15}-{A}_{12}{A}_{25}}{{A}_{15}{(A}_{22}{A}_{11}-{A}_{12}{A}_{21})}, {B}_{4}=\frac{{A}_{22}{A}_{16}-{A}_{12}{A}_{26}}{{A}_{22}{A}_{11}-{A}_{12}{A}_{21}}\\ {B}_{5}=\frac{{A}_{21}}{{A}_{21}{A}_{12}-{A}_{11}{A}_{22}}, {B}_{6}=\frac{{A}_{21}{A}_{14}-{A}_{11}{A}_{24}}{{A}_{14}{(A}_{21}{A}_{12}-{A}_{11}{A}_{22})}, {B}_{7}=\frac{{A}_{21}{A}_{15}-{A}_{11}{A}_{25}}{{A}_{15}{(A}_{21}{A}_{12}-{A}_{11}{A}_{22})}, {B}_{8}=\frac{{A}_{21}{A}_{16}-{A}_{11}{A}_{26}}{{A}_{21}{A}_{12}-{A}_{11}{A}_{22}}\end{array}\right\}$$
(A.1)
$$\left.\begin{array}{c}{C}_{1}={\lambda }^{^{\prime}}{T}_{0}+{\beta }_{T}{T}_{0}[{B}_{1}\gamma +{B}_{5}(1-\gamma )], {C}_{2}={\beta }_{T}{T}_{0}[{B}_{2}\gamma +{B}_{6}(1-\gamma )]\\ {C}_{3}={\beta }_{T}{T}_{0}\left[{B}_{3}\gamma +{B}_{7}\left(1-\gamma \right)\right],{C}_{4}=\tilde{m }+{\beta }_{T}{T}_{0}\left[{B}_{4}\gamma +{B}_{8}\left(1-\gamma \right)\right]\end{array}\right\}$$
(A.2)
$$\left.\begin{array}{c}{D}_{0}=\alpha \gamma {B}_{1}+\alpha \left(1-\gamma \right){B}_{5}, {D}_{1}=\alpha \gamma {B}_{2}+\alpha \left(1-\gamma \right){B}_{6}\\ {D}_{2}=\alpha \gamma {B}_{3}+\alpha \left(1-\gamma \right){B}_{7}, {D}_{3}=\alpha \gamma {B}_{4}+\alpha \left(1-\gamma \right){B}_{8}-{\lambda }^{^{\prime}}\end{array}\right\}$$
(A.3)
$${\vartheta }^{l}=\frac{{\rho }^{l}}{n{S}^{l}}, {\vartheta }^{g}=\frac{{\rho }^{g}}{n\left(1-{S}^{l}\right)}, {\upsilon }^{l}=\frac{{\mu }_{l}}{{k}_{r}^{l}k}, {\upsilon }^{g}=\frac{{\mu }_{g}}{{k}_{r}^{g}k}$$
(A.4)

with

$$\left.\begin{array}{c}{A}_{11}=n{S}^{l}{\beta }_{wp}, {A}_{12}=n\left(1-{S}^{l}\right)\frac{{M}_{a}}{{\rho }^{g}RT}, {A}_{13}=1-n \\ {A}_{14}=n{S}^{l}, {A}_{15}=n(1-{S}^{l}), {A}_{16}=-\left(1-n\right){\beta }_{sT}-{nS}^{l}{\beta }_{wT}-n(1-{S}^{l})\frac{{M}_{a}{p}_{g}}{{\rho }^{g}R{T}^{2}}\end{array}\right\}$$
(A.5)
$$\left.\begin{array}{c}{A}_{21}=n{S}^{l}\left(1-{S}^{l}\right){\beta }_{wp}-n{A}_{s}, {A}_{22}=n{A}_{s}-n{S}^{l}\left(1-{S}^{l}\right)\frac{{M}_{a}}{{\rho }^{g}RT}, {A}_{23}=0 \\ {A}_{24}=-{A}_{25}=n{S}^{l}\left(1-{S}^{l}\right), {A}_{26}=-n{\beta }_{\psi }{A}_{s}{\chi }^{-1}{\left({S}_{e}^{-1/m}-1\right)}^{1/d}+ n{S}^{l}(1-{S}^{l})(\frac{{M}_{a}{p}_{g}}{{\rho }^{g}R{T}^{2}}-{\beta }_{wT})\end{array}\right\}$$
(A.6)
$${\lambda }^{^{\prime}}=3{K}_{b}{\beta }_{T}, \tilde{m }=\left(1-n\right){\rho }^{s}{c}_{s}+ n{S}^{l}{\rho }^{l}{c}_{l}+n(1-{S}^{l}){\rho }^{g}{c}_{g}, \alpha =1-{K}_{b}/{K}_{s}$$
(A.7)
$$\left.\begin{array}{c}{\mu }_{l}=\left(243.18\times {10}^{-7}\right){10}^{\frac{247.8}{T-140}}, {\mu }_{g}=1.48\times {10}^{-6}\frac{\sqrt{T}}{1+119/T} \\ {k}_{r}^{l}=\sqrt{{S}_{e}}{\left[1-{\left(1-{S}_{e}^{1/m}\right)}^{m}\right]}^{2},{k}_{r}^{g}=\sqrt{1-{S}_{e}}{\left(1-{S}_{e}^{1/m}\right)}^{2m}\end{array}\right\}$$
(A.8)

in which \(\gamma \) denotes the effective stress parameter, and \(\gamma \) is identical to the saturation \({S}^{l}\) for approximation. \(m\), \(d\) and \(\chi \) are the material parameters of V–G model. The two set of parameters, \({\beta }_{sp}\), \({\beta }_{wp}\) and \({\beta }_{sT}\), \({\beta }_{wT}\), designate the compressibility and the thermal expansion coefficients of solid particle and liquid, respectively. The symbols \({\beta }_{\psi }\) and \({\beta }_{T}\) denote the surface tension-temperature dependent coefficient and the thermal expansion coefficient of medium, respectively. \({c}_{s}\), \({c}_{l}\) and \({c}_{g}\) represent the specific heat capacity of solid, liquid and gas phases, respectively. \({K}_{s}\) denotes the compressibility moduli of the solid grains. \({K}_{b}=\lambda +2\mu /3\) denotes the bulk modulus of soil skeleton. \(k\) is the intrinsic permeability. \({M}_{a}=0.0288 \mathrm{kg}/\mathrm{mol}\) is the molar mass of dry air. \(R=8.3144 \mathrm{J}/\mathrm{mol}/\mathrm{K}\) is the universal gas constant. \({T}_{0}\) denotes reference temperature. The effective water saturation \({S}_{e}\) is defined as \({S}_{e}=\left({S}^{l}-{S}_{res}^{l}\right)/\left({S}_{sat}^{l}-{S}_{res}^{l}\right)\), and the symbols \({S}_{res}^{l}\) and \({S}_{sat}^{l}\) stand for the degree of saturation at the residual state and at full saturation, respectively. The symbol \({A}_{s}\) can be expressed as \({A}_{s}=-\chi md\left({S}_{sat}^{l}-{S}_{res}^{l}\right){S}_{e}^{(m+1)/m}{\left({S}_{e}^{-1/m}-1\right)}^{(d-1)/d}\).

Appendix B: The terms in Eqs. (5a) and (5b)

The terms in Eqs. (5a) and (5b) in the text are given as follows:

$${b}_{11}=\rho {\omega }^{2}-(\overline{\lambda }+2\mu ){k}_{p}^{2}, {b}_{12}={\rho }^{l}{\omega }^{2}-{D}_{1}{k}_{p}^{2}, {b}_{13}={\rho }^{g}{\omega }^{2}-{D}_{2}{k}_{p}^{2}, {b}_{14}={D}_{3}$$
(B.1)
$${b}_{21}={\rho }^{l}{\omega }^{2}-{B}_{1}{k}_{p}^{2}, {b}_{22}={\vartheta }^{l}{\omega }^{2}+{\upsilon }^{l}\mathrm{i}\omega -{B}_{2}{k}_{p}^{2}, {b}_{23}=-{B}_{3}{k}_{p}^{2}, {b}_{24}={B}_{4}$$
(B.2)
$${b}_{31}={\rho }^{g}{\omega }^{2}-{B}_{5}{k}_{p}^{2}, {b}_{32}=-{B}_{6}{k}_{p}^{2}, {b}_{33}={\vartheta }^{g}{\omega }^{2}+{\upsilon }^{g}\mathrm{i}\omega -{B}_{7}{k}_{p}^{2}, {b}_{34}={B}_{8}$$
(B.3)
$${b}_{41}={C}_{1}(\mathrm{i}\omega +{\tau }_{q}{\omega }^{2}){k}_{p}^{2}, {b}_{42}={C}_{2}(\mathrm{i}\omega +{\tau }_{q}{\omega }^{2}){k}_{p}^{2}$$
(B.4)
$${b}_{43}={C}_{3}(\mathrm{i}\omega +{\tau }_{q}{\omega }^{2}){k}_{p}^{2}, {b}_{44}={{K(1-{\tau }_{\theta }\mathrm{i}\omega )k}_{p}^{2}-C}_{4}(\mathrm{i}\omega +{\tau }_{q}{\omega }^{2})$$
(B.5)
$$\left.\begin{array}{l}{c}_{11}=\rho {\omega }^{2}-\mu {k}_{s}^{2}, {c}_{12}={\rho }^{l}{\omega }^{2}, {c}_{13}={\rho }^{g}{\omega }^{2}, {c}_{21}={\rho }^{l}{\omega }^{2} \\ {c}_{22}={\vartheta }^{l}{\omega }^{2}+{\upsilon }^{l}i\omega , {c}_{31}={\rho }^{g}{\omega }^{2}, {c}_{33}={\vartheta }^{g}{\omega }^{2}+{\upsilon }^{g}i\omega , {c}_{23}={c}_{32}=0\end{array}\right\}$$
(B.6)

Appendix C: The terms in Eqs. (6a)–(6c)

The terms \({d}_{11}^{(\tilde{n })}\sim {d}_{36}^{(\tilde{n })}\) in Eqs. (6a) − (6c) in the text are given as follows:

$$\left.\begin{array}{c}{d}_{11}^{(\tilde{n })}={b}_{31}^{(\tilde{n })}{b}_{43}^{(\tilde{n })}-{b}_{41}^{\left(\tilde{n }\right)}{b}_{33}^{\left(\tilde{n }\right)}, {d}_{12}^{\left(\tilde{n }\right)}={b}_{11}^{\left(\tilde{n }\right)}{b}_{23}^{\left(\tilde{n }\right)}-{b}_{21}^{\left(\tilde{n }\right)}{b}_{13}^{\left(\tilde{n }\right)}, {d}_{13}^{(\tilde{n })}={b}_{12}^{(\tilde{n })}{b}_{23}^{(\tilde{n })}-{b}_{22}^{(\tilde{n })}{b}_{13}^{(\tilde{n })}\\ {d}_{14}^{(\tilde{n })}={b}_{32}^{(\tilde{n })}{b}_{43}^{(\tilde{n })}-{b}_{42}^{\left(\tilde{n }\right)}{b}_{33}^{\left(\tilde{n }\right)}, {d}_{15}^{\left(\tilde{n }\right)}={b}_{14}^{\left(\tilde{n }\right)}{b}_{23}^{\left(\tilde{n }\right)}-{b}_{24}^{\left(\tilde{n }\right)}{b}_{13}^{\left(\tilde{n }\right)},{d}_{16}^{(\tilde{n })}={b}_{34}^{(\tilde{n })}{b}_{43}^{(\tilde{n })}-{b}_{44}^{(\tilde{n })}{b}_{33}^{(\tilde{n })}\end{array}\right\}$$
(C.1)
$$\left.\begin{array}{c}{d}_{21}^{\left(\tilde{n }\right)}={b}_{31}^{\left(\tilde{n }\right)}{b}_{42}^{\left(\tilde{n }\right)}-{b}_{41}^{\left(\tilde{n }\right)}{b}_{32}^{\left(\tilde{n }\right)}, {d}_{22}^{\left(\tilde{n }\right)}={b}_{11}^{\left(\tilde{n }\right)}{b}_{22}^{\left(\tilde{n }\right)}-{b}_{21}^{\left(\tilde{n }\right)}{b}_{12}^{\left(\tilde{n }\right)}, {d}_{23}^{\left(\tilde{n }\right)}={b}_{13}^{\left(\tilde{n }\right)}{b}_{22}^{\left(\tilde{n }\right)}-{b}_{23}^{\left(\tilde{n }\right)}{b}_{12}^{\left(\tilde{n }\right)}\\ {d}_{24}^{(\tilde{n })}={b}_{33}^{(\tilde{n })}{b}_{42}^{(\tilde{n })}-{b}_{43}^{\left(\tilde{n }\right)}{b}_{32}^{\left(\tilde{n }\right)},{d}_{25}^{\left(\tilde{n }\right)}={b}_{14}^{\left(\tilde{n }\right)}{b}_{22}^{\left(\tilde{n }\right)}-{b}_{24}^{\left(\tilde{n }\right)}{b}_{12}^{\left(\tilde{n }\right)} ,{d}_{26}^{(\tilde{n })}={b}_{34}^{(\tilde{n })}{b}_{42}^{(\tilde{n })}-{b}_{44}^{(\tilde{n })}{b}_{32}^{(\tilde{n })}\end{array}\right\}$$
(C.2)
$$\left.\begin{array}{c}{d}_{31}^{\left(\tilde{n }\right)}={b}_{31}^{\left(\tilde{n }\right)}{b}_{43}^{\left(\tilde{n }\right)}-{b}_{41}^{\left(\tilde{n }\right)}{b}_{33}^{\left(\tilde{n }\right)}, {d}_{32}^{\left(\tilde{n }\right)}={b}_{11}^{\left(\tilde{n }\right)}{b}_{23}^{\left(\tilde{n }\right)}-{b}_{21}^{\left(\tilde{n }\right)}{b}_{13}^{\left(\tilde{n }\right)}, {d}_{33}^{\left(\tilde{n }\right)}={b}_{14}^{\left(\tilde{n }\right)}{b}_{23}^{\left(\tilde{n }\right)}-{b}_{24}^{\left(\tilde{n }\right)}{b}_{13}^{\left(\tilde{n }\right)}\\ {d}_{34}^{(\tilde{n })}={b}_{34}^{(\tilde{n })}{b}_{43}^{(\tilde{n })}-{b}_{44}^{\left(\tilde{n }\right)}{b}_{33}^{\left(\tilde{n }\right)}{, d}_{35}^{\left(\tilde{n }\right)}={b}_{12}^{\left(\tilde{n }\right)}{b}_{23}^{\left(\tilde{n }\right)}-{b}_{22}^{\left(\tilde{n }\right)}{b}_{13}^{\left(\tilde{n }\right)}, {d}_{36}^{(\tilde{n })}={b}_{32}^{(\tilde{n })}{b}_{43}^{(\tilde{n })}-{b}_{42}^{(\tilde{n })}{b}_{33}^{(\tilde{n })}\end{array}\right\}$$
(C.3)

Appendix D: The terms in Eq. (12a)

The expressions of terms \({k}_{11}\), \({k}_{12}\), \({k}_{21}\) and \({k}_{22}\) in Eq. (12a) in the text are given as follows:

$$\left.\begin{array}{l}{k}_{11}={\rho }^{s}{\omega }^{2}-\left(\lambda +2\mu \right){k}_{p}^{2}, {k}_{12}=-3{K}_{b}{\beta }_{T} \\ {k}_{21}=3{K}_{b}{\beta }_{T}{T}_{0}(i\omega +{\tau }_{q}{\omega }^{2}){k}_{p}^{2}, {k}_{22}=K\left(1-{\tau }_{\theta }\mathrm{i}\omega \right){k}_{p}^{2}-{\rho }^{s}{c}_{s}(i\omega +{\tau }_{q}{\omega }^{2})\end{array}\right\}$$
(D.1)

Appendix E: The elements in the matrixes [F] and [G] of Eq. (17)

The elements \({f}_{11}\sim {f}_{88}\) in the matrix [F] of Eq. (17) and the elements \({g}_{1}\sim {g}_{8}\) in the matrix [G] of Eq. (17) are given as follows:

$$\left.\begin{array}{l}{f}_{11}=\left(\overline{\lambda }+2\mu {n}_{tp1}^{2}+{D}_{1}{\delta }_{fp1}+{D}_{2}{\delta }_{ap1}\right){k}_{tp1}^{2}-{D}_{3}{\delta }_{Tp1} \\ {f}_{12}=\left(\overline{\lambda }+2\mu {n}_{tp2}^{2}+{D}_{1}{\delta }_{fp2}+{D}_{2}{\delta }_{ap2}\right){k}_{tp2}^{2}-{D}_{3}{\delta }_{Tp2} \\ {f}_{13}=\left(\overline{\lambda }+2\mu {n}_{tp3}^{2}+{D}_{1}{\delta }_{fp3}+{D}_{2}{\delta }_{ap3}\right){k}_{tp3}^{2}-{D}_{3}{\delta }_{Tp3} \\ {f}_{14}=\left(\overline{\lambda }+2\mu {n}_{tp4}^{2}+{D}_{1}{\delta }_{fp4}+{D}_{2}{\delta }_{ap4}\right){k}_{tp4}^{2}-{D}_{3}{\delta }_{Tp4} \\ {f}_{15}=-2\mu {l}_{ts}{n}_{ts}{k}_{ts}^{2}, {f}_{16}=-\left(\widehat{\lambda }+2\widehat{\mu }{n}_{rp1}^{2}\right){k}_{rp1}^{2}-3{\widehat{K}}_{b}{{\widehat{\beta }}_{T}\widehat{\delta }}_{Tp1} \\ {f}_{17}=-\left(\widehat{\lambda }+2\widehat{\mu }{n}_{rp2}^{2}\right){k}_{rp2}^{2}-3{\widehat{K}}_{b}{{\widehat{\beta }}_{T}\widehat{\delta }}_{Tp2} ,{f}_{18}=-2\widehat{\mu }{l}_{rs}{n}_{rs}{k}_{rs}^{2}\end{array}\right\}$$
(E.1)
$$\left.\begin{array}{c}{f}_{21}=2\mu {l}_{tp1}{n}_{tp1}{k}_{tp1}^{2}, {f}_{22}=2\mu {l}_{tp2}{n}_{tp2}{k}_{tp2}^{2}, {f}_{23}=2\mu {l}_{tp3}{n}_{tp3}{k}_{tp3}^{2},{f}_{24}=2\mu {l}_{tp4}{n}_{tp4}{k}_{tp4}^{2} \\ {f}_{25}=\mu {({n}_{ts}^{2}-{l}_{ts}^{2})k}_{ts}^{2}, {f}_{26}=2\widehat{\mu }{l}_{rp1}{n}_{rp1}{k}_{rp1}^{2},{f}_{27}=2\widehat{\mu }{l}_{rp2}{n}_{rp2}{k}_{rp2}^{2},{f}_{28}=\widehat{\mu }{({l}_{rs}^{2}-{n}_{rs}^{2})k}_{rs}^{2}\end{array}\right\}$$
(E.2)
$$\left.\begin{array}{c}{f}_{31}={l}_{tp1}{k}_{tp1}, {f}_{32}={l}_{tp2}{k}_{tp2}, {f}_{33}={l}_{tp3}{k}_{tp3}, {f}_{34}={l}_{tp4}{k}_{tp4} \\ {f}_{35}={n}_{ts}{k}_{ts}, {f}_{36}={-l}_{rp1}{k}_{rp1}, {f}_{37}={-l}_{rp2}{k}_{rp2},{f}_{38}={n}_{rs}{k}_{rs}\end{array}\right\}$$
(E.3)
$$\left.\begin{array}{c}{f}_{41}={n}_{tp1}{k}_{tp1}, {f}_{42}={n}_{tp2}{k}_{tp2}, {f}_{43}={n}_{tp3}{k}_{tp3}, {f}_{44}={n}_{tp4}{k}_{tp4}\\ {f}_{45}=-{l}_{ts}{k}_{ts}, {f}_{46}={n}_{rp1}{k}_{rp1}, {f}_{47}={n}_{rp2}{k}_{rp2},{f}_{48}={l}_{rs}{k}_{rs}\end{array}\right\}$$
(E.4)
$$\left.\begin{array}{c}{f}_{51}={n}_{tp1}{k}_{tp1}{\delta }_{fp1}, {f}_{52}={n}_{tp2}{k}_{tp2}{\delta }_{fp2}, {f}_{53}={n}_{tp3}{k}_{tp3}{\delta }_{fp3}\\ {f}_{54}={n}_{tp4}{k}_{tp4}{\delta }_{fp4}, {f}_{55}={-l}_{ts}{k}_{ts}{\delta }_{fs},{f}_{56}={f}_{57}={f}_{58}=0\end{array}\right\}$$
(E.5)
$$\left.\begin{array}{c}{f}_{61}={n}_{tp1}{k}_{tp1}{\delta }_{ap1}, {f}_{62}={n}_{tp2}{k}_{tp2}{\delta }_{ap2}, {f}_{63}={n}_{tp3}{k}_{tp3}{\delta }_{ap3}\\ {f}_{64}={n}_{tp4}{k}_{tp4}{\delta }_{ap4}, {f}_{65}=-{l}_{ts}{k}_{ts}{\delta }_{as}, {f}_{66}={f}_{67}={f}_{68}=0\end{array}\right\}$$
(E.6)
$$\left.\begin{array}{c}{f}_{71}={\delta }_{Tp1}, {f}_{72}={\delta }_{Tp2}, {f}_{73}={\delta }_{Tp3}, {f}_{74}={\delta }_{Tp4 } \\ {f}_{75}=0, {f}_{76}=-{\widehat{\delta }}_{Tp1}, {f}_{77}=-{\widehat{\delta }}_{Tp2}, {f}_{78}=0\end{array}\right\}$$
(E.7)
$$\left.\begin{array}{l}{f}_{81}=K{n}_{tp1}{k}_{tp1}{\delta }_{Tp1}, {f}_{82}=K{n}_{tp2}{k}_{tp2}{\delta }_{Tp2}, {f}_{83}=K{n}_{tp3}{k}_{tp3}{\delta }_{Tp3} \\ {f}_{84}=K{n}_{tp4}{k}_{tp4}{\delta }_{Tp4}, {f}_{85}={f}_{88}=0, {f}_{86}=\widehat{K}{n}_{rp1}{k}_{rp1}{\widehat{\delta }}_{Tp1},{f}_{87}=\widehat{K}{n}_{rp2}{k}_{rp2}{\widehat{\delta }}_{Tp2}\end{array}\right\}$$
(E.8)
$$\left.\begin{array}{c}{g}_{1}=\left(\widehat{\lambda }+2\widehat{\mu }{n}_{ip1}^{2}\right){k}_{ip1}^{2}+3{\widehat{K}}_{b}{{\widehat{\beta }}_{T}\widehat{\delta }}_{Tp1}, {g}_{2}=2\widehat{\mu }{l}_{ip1}{n}_{ip1}{k}_{ip1}^{2}, {g}_{3}={l}_{ip1}{k}_{ip1}\\ {g}_{4}={n}_{ip1}{k}_{ip1}, {g}_{5}={g}_{6}=0, {g}_{7}={\widehat{\delta }}_{Tp1},{g}_{8}=\widehat{K}{n}_{ip1}{k}_{ip1}{\widehat{\delta }}_{Tp1}\end{array}\right\}$$
(E.9)

Appendix F: The elements in the matrixes \({{\varvec{S}}}_{5\times 4}\), \({{\varvec{U}}}_{4\times 5}\), \({\widehat{{\varvec{S}}}}_{4\times 2}\) and \({\widehat{{\varvec{U}}}}_{2\times 4}\) of Eqs. (20a) and (20b)

The expressions of the element in \({{\varvec{S}}}_{5\times 4}\), \({{\varvec{U}}}_{4\times 5}\), \({\widehat{{\varvec{S}}}}_{4\times 2}\) and \({\widehat{{\varvec{U}}}}_{2\times 4}\) of Eqs. (20a) and (20b) in the text are given as follows:

$$\left.\begin{array}{l}{\sigma }_{zz}^{tp1}=\left[{D}_{3}{\delta }_{Tp1}-\left(\overline{\lambda }+{2\mu n}_{tp1}^{2}+{D}_{1}{\delta }_{fp1}+{D}_{2}{\delta }_{ap1}\right){k}_{tp1}^{2}\right]{A}_{tp1}^{s}\\ {\sigma }_{zz}^{tp2}=\left[{D}_{3}{\delta }_{Tp2}-\left(\overline{\lambda }+{2\mu n}_{tp2}^{2}+{D}_{1}{\delta }_{fp2}+{D}_{2}{\delta }_{ap2}\right){k}_{tp2}^{2}\right]{A}_{tp2}^{s}\\ {\sigma }_{zz}^{tp3}=\left[{D}_{3}{\delta }_{Tp3}-\left(\overline{\lambda }+{2\mu n}_{tp3}^{2}+{D}_{1}{\delta }_{fp3}+{D}_{2}{\delta }_{ap3}\right){k}_{tp3}^{2}\right]{A}_{tp3}^{s}\\ {\sigma }_{zz}^{tp4}=\left[{D}_{3}{\delta }_{Tp4}-\left(\overline{\lambda }+{2\mu n}_{tp4}^{2}+{D}_{1}{\delta }_{fp4}+{D}_{2}{\delta }_{ap4}\right){k}_{tp4}^{2}\right]{A}_{tp4}^{s}\\ {\sigma }_{zz}^{ts}={2\mu l}_{ts}{n}_{ts}{k}_{ts}^{2}{{\varvec{B}}}_{ts}^{s} \end{array}\right\}$$
(F.1)
$$\left.\begin{array}{c}{\sigma }_{xz}^{tp1}=2\mu {l}_{tp1}{n}_{tp1}{k}_{tp1}^{2}{A}_{tp1}^{s},{\sigma }_{xz}^{tp2}=2\mu {l}_{tp2}{n}_{tp2}{k}_{tp2}^{2}{A}_{tp2}^{s},{\sigma }_{xz}^{tp3}=2\mu {l}_{tp3}{n}_{tp3}{k}_{tp3}^{2}{A}_{tp3}^{s}\\ {\sigma }_{xz}^{tp4}=2\mu {l}_{tp4}{n}_{tp4}{k}_{tp4}^{2}{A}_{tp4}^{s},{\sigma }_{xz}^{ts}=\mu \left({n}_{ts}^{2}-{l}_{ts}^{2}\right){k}_{ts}^{2}{{\varvec{B}}}_{ts}^{s} \end{array}\right\}$$
(F.2)
$$\left.\begin{array}{l}{-p}_{f}^{tp1}=\left[{B}_{4}{\delta }_{Tp1}-\left({B}_{1}+{B}_{2}{\delta }_{fp1}+{B}_{3}{\delta }_{ap1}\right){k}_{tp1}^{2}\right]{A}_{tp1}^{s}\\ {-p}_{f}^{tp2}=\left[{B}_{4}{\delta }_{Tp2}-\left({B}_{1}+{B}_{2}{\delta }_{fp2}+{B}_{3}{\delta }_{ap2}\right){k}_{tp2}^{2}\right]{A}_{tp2}^{s}\\ {-p}_{f}^{tp3}=\left[{B}_{4}{\delta }_{Tp3}-\left({B}_{1}+{B}_{2}{\delta }_{fp3}+{B}_{3}{\delta }_{ap3}\right){k}_{tp3}^{2}\right]{A}_{tp3}^{s}\\ {-p}_{f}^{tp4}=\left[{B}_{4}{\delta }_{Tp4}-\left({B}_{1}+{B}_{2}{\delta }_{fp4}+{B}_{3}{\delta }_{ap4}\right){k}_{tp4}^{2}\right]{A}_{tp4}^{s}\\ {-p}_{f}^{ts}=0 \end{array}\right\}$$
(F.3)
$$\left.\begin{array}{l}{-p}_{a}^{tp1}=\left[{B}_{8}{\delta }_{Tp1}-\left({B}_{5}+{B}_{6}{\delta }_{fp1}+{B}_{7}{\delta }_{ap1}\right){k}_{tp1}^{2}\right]{A}_{tp1}^{s}\\ {-p}_{a}^{tp2}=\left[{B}_{8}{\delta }_{Tp2}-\left({B}_{5}+{B}_{6}{\delta }_{fp2}+{B}_{7}{\delta }_{ap2}\right){k}_{tp2}^{2}\right]{A}_{tp2}^{s}\\ {-p}_{a}^{tp3}=\left[{B}_{8}{\delta }_{Tp3}-\left({B}_{5}+{B}_{6}{\delta }_{fp3}+{B}_{7}{\delta }_{ap3}\right){k}_{tp3}^{2}\right]{A}_{tp3}^{s}\\ {-p}_{a}^{tp4}=\left[{B}_{8}{\delta }_{Tp4}-\left({B}_{5}+{B}_{6}{\delta }_{fp4}+{B}_{7}{\delta }_{ap4}\right){k}_{tp4}^{2}\right]{A}_{tp4}^{s}\\ {-p}_{a}^{ts}=0 \end{array}\right\}$$
(F.4)
$$\left.\begin{array}{l}{\sigma }_{zz}^{ip1}=-\left[\left(3\widehat{\lambda }+2\widehat{\mu }\right){\widehat{\beta }}_{T}{\widehat{\delta }}_{Tp1}+\left(\widehat{\lambda }+2\widehat{\mu }{n}_{ip2}^{2}\right){k}_{ip1}^{2}\right]{A}_{ip1}^{s} \\ {\sigma }_{zz}^{rp1}=-\left[\left(3\widehat{\lambda }+2\widehat{\mu }\right){\widehat{\beta }}_{T}{\widehat{\delta }}_{Tp1}+\left(\widehat{\lambda }+2\widehat{\mu }{n}_{rp1}^{2}\right){k}_{rp1}^{2}\right]{A}_{rp1}^{s}\\ {\sigma }_{zz}^{rp2}=-\left[\left(3\widehat{\lambda }+2\widehat{\mu }\right){\widehat{\beta }}_{T}{\widehat{\delta }}_{Tp2}+\left(\widehat{\lambda }+2\widehat{\mu }{n}_{rp1}^{2}\right){k}_{rp2}^{2}\right]{A}_{rp2}^{s}\\ {\sigma }_{zz}^{rs}=-{2\widehat{\mu }k}_{rs}^{2}{l}_{rs}{n}_{rs} \end{array}\right\}$$
(F.5)
$$\left.\begin{array}{c}{\sigma }_{xz}^{ip1}=2\widehat{\mu }{l}_{ip1}{n}_{ip1}{k}_{ip1}^{2}{A}_{ip1}^{s}, {\sigma }_{xz}^{rp1}=-2\widehat{\mu }{l}_{rp1}{n}_{rp1}{k}_{rp1}^{2}{A}_{rp1}^{s}\\ {\sigma }_{xz}^{rp2}=-2\widehat{\mu }{l}_{rp2}{n}_{rp2}{k}_{rp2}^{2}{A}_{rp2}^{s}, {\sigma }_{xz}^{rs}=\widehat{\mu }\left({n}_{rs}^{2}-{l}_{rs}^{2}\right){k}_{rs}^{2}{{\varvec{B}}}_{rs}^{s}\end{array}\right\}$$
(F.6)
$$\left.\begin{array}{l}{\dot{u}}_{z}^{stp1}=-{n}_{tp1}{v}_{tp1}{k}_{tp1}^{2}{A}_{tp1}^{s},{\dot{u}}_{z}^{stp2}=-{n}_{tp2}{v}_{tp2}{k}_{tp2}^{2}{A}_{tp2}^{s},{\dot{u}}_{z}^{stp3}=-{n}_{tp3}{v}_{tp3}{k}_{tp3}^{2}{A}_{tp3}^{s}\\ {\dot{u}}_{z}^{stp4}=-{n}_{tp4}{v}_{tp4}{k}_{tp4}^{2}{A}_{tp4}^{s},{\dot{u}}_{z}^{sts}={{l}_{ts}{v}_{ts}k}_{ts}^{2}{{\varvec{B}}}_{ts}^{s} \end{array}\right\}$$
(F.7)
$$\left.\begin{array}{l}{\dot{u}}_{x}^{stp1}={l}_{tp1}{v}_{tp1}{k}_{tp1}^{2}{A}_{tp1}^{s},{\dot{u}}_{x}^{stp2}={l}_{tp2}{v}_{tp2}{k}_{tp2}^{2}{A}_{tp2}^{s},{\dot{u}}_{x}^{stp3}={l}_{tp3}{v}_{tp3}{k}_{tp3}^{2}{A}_{tp3}^{s}\\ {\dot{u}}_{x}^{stp4}={l}_{tp4}{v}_{tp4}{k}_{tp4}^{2}{A}_{tp4}^{s},{\dot{u}}_{x}^{sts}={n}_{ts}{v}_{ts}{k}_{ts}^{2}{{\varvec{B}}}_{ts}^{s} \end{array}\right\}$$
(F.8)
$$\left.\begin{array}{l}{\dot{u}}_{z}^{ftp1}=-{n}_{tp1}{v}_{tp1}{k}_{tp1}^{2}{\delta }_{fp1}{A}_{tp1}^{s}, {\dot{u}}_{z}^{ftp2}=-{n}_{tp2}{v}_{tp2}{k}_{tp2}^{2}{\delta }_{fp2}{A}_{tp2}^{s}, {\dot{u}}_{z}^{ftp3}=-{n}_{tp3}{v}_{tp3}{k}_{tp3}^{2}{\delta }_{fp3}{A}_{tp3}^{s}\\ {\dot{u}}_{z}^{ftp4}=-{n}_{tp4}{v}_{tp4}{k}_{tp4}^{2}{{\delta }_{fp4}A}_{tp4}^{s}, {\dot{u}}_{z}^{fts}={v}_{ts}{k}_{ts}^{2}{l}_{ts}{\delta }_{fs}{{\varvec{B}}}_{ts}^{s} \end{array}\right\}$$
(F.9)
$$\left.\begin{array}{l}{\dot{u}}_{z}^{atp1}=-{n}_{tp1}{v}_{tp1}{k}_{tp1}^{2}{\delta }_{ap1}{A}_{tp1}^{s},{\dot{u}}_{z}^{atp2}=-{n}_{tp2}{v}_{tp2}{k}_{tp2}^{2}{\delta }_{ap2}{A}_{tp2}^{s},{\dot{u}}_{z}^{atp3}=-{n}_{tp3}{v}_{tp3}{k}_{tp3}^{2}{\delta }_{ap3}{A}_{tp3}^{s}\\ {\dot{u}}_{z}^{atp4}=-{n}_{tp4}{v}_{tp4}{k}_{tp4}^{2}{{\delta }_{ap4}A}_{tp4}^{s}, {\dot{u}}_{z}^{ats}={v}_{ts}{k}_{ts}^{2}{l}_{ts}{\delta }_{as}{{\varvec{B}}}_{ts}^{s} \end{array}\right\}$$
(F.10)
$$\left.\begin{array}{c}{\dot{u}}_{z}^{sip1}=-{n}_{ip1}{v}_{ip1}{k}_{ip1}^{2}{A}_{ip1}^{s},{\dot{u}}_{z}^{srp1}={n}_{rp1}{v}_{rp1}{k}_{rp1}^{2}{A}_{rp1}^{s},{\dot{u}}_{z}^{srp2}={n}_{rp2}{v}_{rp2}{k}_{rp2}^{2}{A}_{rp2}^{s},{\dot{u}}_{z}^{srs}={l}_{rs}{v}_{rs}{k}_{rs}^{2}{{\varvec{B}}}_{rs}^{s}\\ {\dot{u}}_{x}^{sip1}={l}_{ip1}{v}_{ip1}{k}_{ip1}^{2}{A}_{ip1}^{s},{\dot{u}}_{x}^{srp1}={l}_{rp1}{v}_{rp1}{k}_{rp1}^{2}{A}_{rp1}^{s},{\dot{u}}_{x}^{srp2}={l}_{rp2}{v}_{rp2}{k}_{rp2}^{2}{A}_{rp2}^{s},{\dot{u}}_{x}^{srs}=-{n}_{rs}{v}_{rs}{k}_{rs}^{2}{{\varvec{B}}}_{rs}^{s}\end{array}\right\}$$
(F.11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dai, G., Zhou, F. et al. Propagation behavior of homogeneous plane-P1-wave at the interface between a thermoelastic solid medium and an unsaturated porothermoelastic medium. Eur. Phys. J. Plus 136, 1163 (2021). https://doi.org/10.1140/epjp/s13360-021-02144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02144-x

Navigation